Caricamento in corso...

01NLAJM, 01NLALI

A.A. 2024/25

Course Language

Inglese

Degree programme(s)

1st degree and Bachelor-level of the Bologna process in Ingegneria Meccanica (Mechanical Engineering) - Torino

1st degree and Bachelor-level of the Bologna process in Ingegneria Dell'Autoveicolo (Automotive Engineering) - Torino

Course structure

Teaching | Hours |
---|---|

Lezioni | 50 |

Esercitazioni in aula | 30 |

Lecturers

Teacher | Status | SSD | h.Les | h.Ex | h.Lab | h.Tut | Years teaching |
---|---|---|---|---|---|---|---|

Paolino Davide Salvatore | Professore Ordinario | IIND-03/A | 50 | 0 | 0 | 0 | 7 |

Co-lectures

Espandi

Riduci

Riduci

Teacher | Status | SSD | h.Les | h.Ex | h.Lab | h.Tut |
---|---|---|---|---|---|---|

Battiato Giuseppe | Ricercatore a tempo det. L.240/10 art.24-B | IIND-03/A | 0 | 30 | 0 | 0 |

Boursier Niutta Carlo | Ricercatore L240/10 | IIND-03/A | 0 | 30 | 0 | 0 |

Context

SSD | CFU | Activities | Area context |
---|---|---|---|

ING-IND/14 | 8 | B - Caratterizzanti | Ingegneria meccanica |

2023/24

This course is aimed at providing the students some fundamentals of solid mechanics needed to perform at least a preliminary operation of either design or verification of structural and mechanical systems undergoing some static loading conditions. Paradigm of this analysis is the beam, whose elementary approaches to compute the stress resultants and the occurring stress and strain are given together with a preliminary description of strength of materials in static behavior and related testing techniques. Course starts with the static equilibrium and shows how beamlike structures are constrained, loaded and to compute the external and internal reactions, together with the distribution of stress resultants along the beam line axis. This analysis is deeply performed at least in case of statically determined structure. Two and three dimensional examples will be proposed as well as a short description of rules for truss structures. A deep description of basic concepts of solid continuous mechanics is then proposed, by including definitions and computations of stress, strain and constitutive laws of materials under the assumption of linear elastic behaviour. Elastic and mechanical properties of material and static strength are then defined according to the standard tensile test. The elementary theory of beam is then described to allow the student computing both the stresses and the strains occurring in a one-dimensional structural element. De St Venant principle and related elaborations are then developed and applied to several examples to investigate the axial, flexural, torsional and shear behaviors. Some additional topics are proposed, concerning the computation of displacements and rotations in beam under a defined combined set of loading conditions. Elastic stability of slender beam under compression is evenly discussed and buckling phenomenon investigated. The last part of the course deals with the fatigue phenomenon in structures subjected to time-varying uniaxial loading conditions. Concept of static safety factor for design against yielding, rupture or buckling of beamlike structures is defined and applied to some examples of structures built in ductile and brittle materials as well as computation of equivalent (ideal) stress in multi-axial loading conditions.

Materials are the main constituents of any mechanical and automotive components. The strength of materials and the structural integrity of the designed components is a key piece of knowledge for mechanical and automotive engineers. In this respect, the 'Fundamentals of strength of materials' course is aimed at providing the students some fundamentals of solid mechanics needed to perform at least a preliminary operation of either design or verification of structural and mechanical systems undergoing some static loading conditions. Paradigm of this analysis is the beam, whose elementary approaches to compute the stress resultants and the occurring stress and strain are given together with a preliminary description of strength of materials in static behavior and related testing techniques. Course starts with the static equilibrium and shows how beamlike structures are constrained, loaded and to compute the external and internal reactions, together with the distribution of stress resultants along the beam line axis. This analysis is deeply performed at least in case of statically determined structure. Two and three dimensional examples will be proposed as well as a short description of rules for truss structures. A deep description of basic concepts of solid continuous mechanics is then proposed, by including definitions and computations of stress, strain and constitutive laws of materials under the assumption of linear elastic behaviour. Elastic and mechanical properties of material and static strength are then defined according to the standard tensile test. The elementary theory of beam is then described to allow the student computing both the stresses and the strains occurring in a one-dimensional structural element. De St Venant principle and related elaborations are then developed and applied to several examples to investigate the axial, flexural, torsional and shear behaviors. Some additional topics are proposed, concerning the computation of displacements and rotations in beam under a defined combined set of loading conditions. Elastic stability of slender beam under compression is evenly discussed and buckling phenomenon investigated. The last part of the course deals with the fatigue phenomenon in structures subjected to time-varying uniaxial loading conditions. Concept of static safety factor for design against yielding, rupture or buckling of beamlike structures is defined and applied to some examples of structures built in ductile and brittle materials as well as computation of equivalent (ideal) stress in multi-axial loading conditions.

At the end of this course it is required that student easily handle some typical tools of analytical methods for the static behavior prediction at least of beamlike structures.
Fundamental goals of the discipline are:
•a comprehensive knowledge, understanding and distinguishing of mechanical properties and strength of ductile and brittle materials; linear and nonlinear elastic behaviour conditions; concepts of stress, strain, displacement and rotation, described in both principal and non principal reference frames; static failure criteria and safety factor; geometrical properties of plane figures, interpreted as cross section of beams; theory of beam and relations between stress and load for each static behavior foreseen by De St Venant. In addition, student will get acquainted with the performing of fatigue verification of structures subjected to time-varying uniaxial loading conditions.
•providing some skills as the basic tools to:
1) simplify to a level of elementary scheme the layout of a beamlike mechanical component and perform a complete static analysis;
2) evaluate the degree of indeterminacy of the system;
3) calculate reaction forces of statically determinate structures;
4) calculate the internal stress resultant diagrams, stresses, strains, displacements and rotations of each cross section of one-dimensional elements;
5) identify the critical points of the structure and compute the equivalent stress to be compared to the strength of material or even to buckling threshold;
6) verify structures subject to uniaxial fatigue.

At the end of this course it is required that student easily handle some typical tools of analytical methods for the static behavior prediction at least of beamlike structures.
Fundamental goals of the discipline are:
•a comprehensive knowledge, understanding and distinguishing of mechanical properties and strength of ductile and brittle materials; linear and nonlinear elastic behaviour conditions; concepts of stress, strain, displacement and rotation, described in both principal and non principal reference frames; static failure criteria and safety factor; geometrical properties of plane figures, interpreted as cross section of beams; theory of beam and relations between stress and load for each static behavior foreseen by De St Venant. In addition, student will get acquainted with the performing of fatigue verification of structures subjected to time-varying uniaxial loading conditions.
•providing some skills as the basic tools to:
1) simplify to a level of elementary scheme the layout of a beamlike mechanical component and perform a complete static analysis;
2) evaluate the degree of indeterminacy of the system;
3) calculate reaction forces of statically determinate structures;
4) calculate the internal stress resultant diagrams, stresses, strains, displacements and rotations of each cross section of one-dimensional elements;
5) identify the critical points of the structure and compute the equivalent stress to be compared to the strength of material or even to buckling threshold;
6) verify structures subject to uniaxial fatigue.

Some typical mathematical tools (study of functions, computation of derivatives and integrals, matrix algebra, solution of eigenvalue/eigenvectors problems) and physics (basic concepts of kinematics and statics) and some basics of materials sciences (materials classes and properties).

Some typical mathematical tools (study of functions, computation of derivatives and integrals, matrix algebra, solution of eigenvalue/eigenvectors problems) and physics (basic concepts of kinematics and statics) and some basics of materials sciences (materials classes and properties).

Topics dealt within this course are herein listed.
1. Statics : Basic concepts of static behavior of structures (force, moment, rigid and deformable bodies), loading conditions, constraints, static and kinematic determinacy, equilibrium conditions and equations. Computations of reactions, internal forces, diagrams. Beams, bars, trusses. Outlines of Virtual Work Principle and application to undetermined structures.
2. Stress : Stress vector, tensor, components. Principal stresses and direction, related computation. Mohr circles. Equivalent stress definition and computation.
3. Strain : Rigid body motion and strain definition in elastic body. Strain components, principal strain and direction. Stress-strain relations, Hooke’s law. Elastic properties of materials. Elastic energy storage.
4. Strength of materials : Tensile test, material behaviour and properties. Elastic coefficients. Yielding phenomenon, brittle and ductile materials. Safety factors in statics.
5. Beam theory : De Saint Venant principle, beam definition, loading conditions, axial, flexural, shear, torsional behaviors. Approximated solutions for torsion of rectangular cross sections, multiple rectangles and thin walled structures. Computation of stresses, strains, displacements and rotations. Shear centre. Coupled behavior. Buckling and elastic instability.
6. Uniaxial mechanical fatigue at high number of cycles (HCF) : fundamental parameters, SN diagram, effect of the mean stress (Haigh, Goodman-Smith, Ros and Master diagrams). From material to component: surface finishing effect, load type effect, dimension effect and notch effect. Component life and fatigue safety factor. Fatigue with varying amplitude stress (Palmgren-Miner cumulative damage rule).

Topics dealt within this course are herein listed.
1. Statics : Basic concepts of static behavior of structures (force, moment, rigid and deformable bodies), loading conditions, constraints, static and kinematic determinacy, equilibrium conditions and equations. Computations of reactions, internal forces, diagrams. Beams, bars, trusses. Outlines of Virtual Work Principle and application to undetermined structures.
2. Stress : Stress vector, tensor, components. Principal stresses and direction, related computation. Mohr circles. Equivalent stress definition and computation.
3. Strain : Rigid body motion and strain definition in elastic body. Strain components, principal strain and direction. Stress-strain relations, Hooke’s law. Elastic properties of materials. Elastic energy storage.
4. Strength of materials : Tensile test, material behaviour and properties. Elastic coefficients. Yielding phenomenon, brittle and ductile materials. Safety factors in statics.
5. Beam theory : De Saint Venant principle, beam definition, loading conditions, axial, flexural, shear, torsional behaviors. Approximated solutions for torsion of rectangular cross sections, multiple rectangles and thin walled structures. Computation of stresses, strains, displacements and rotations. Shear centre. Coupled behavior. Buckling and elastic instability.
6. Uniaxial mechanical fatigue at high number of cycles (HCF) : fundamental parameters, SN diagram, effect of the mean stress (Haigh, Goodman-Smith, Ros and Master diagrams). From material to component: surface finishing effect, load type effect, dimension effect and notch effect. Component life and fatigue safety factor. Fatigue with varying amplitude stress (Palmgren-Miner cumulative damage rule).

This course is organized in two parts. Lectures will give a straight presentation of relevant topics to be studied to perform a complete structural static analysis of some mechanical structures.
Practice hours will be offered to solve examples, numerical exercises and practical cases and even an exam simulation.

This course is organized in two parts. Lectures will give a straight presentation of relevant topics to be studied to perform a complete structural static analysis of some mechanical structures.
Practice hours will be offered to solve examples, numerical exercises and practical cases and even an exam simulation.
Laboratory hours are also offered to students for a practical application of some of the theoretical concepts taught in the course. Laboratory hours are given at DexpiLab in DIMEAS.

Textbooks: Some notes directly taken from the classes will be shared with students through the website.
Theoretical aspects presented during the lectures can be found on the following textbooks:
1.D.Gross, W.Hauger, J.Schroder, W.A.Wall, N. Rajapakse - "Engineering Mechanics 1: Statics", Springer.
2.V. Da Silva - "Mechanics and strength of materials", Springer.
3.J.D. Renton, "Applied elasticity : matrix and tensor analysis of elastic continua", Chichester, Horwood, New York: Wiley, 1987
4.J.A. Bannantine, J.J. Comer, J.L. Handrock, “Fundamentals of metal fatigue analysis”, Prentice Hall, Englewood Cliffs, 1990.
or evenly, but the textbook is just partially dedicated to the above topics:
1.J. Beer, S.Johnston - "Solid mechanics", McGraw-Hill.

Textbooks: Some notes directly taken from the classes will be shared with students through the website.
Theoretical aspects presented during the lectures can be found on the following textbooks:
1.D.Gross, W.Hauger, J.Schroder, W.A.Wall, N. Rajapakse - "Engineering Mechanics 1: Statics", Springer.
2.V. Da Silva - "Mechanics and strength of materials", Springer.
3.J.D. Renton, "Applied elasticity : matrix and tensor analysis of elastic continua", Chichester, Horwood, New York: Wiley, 1987
4.J.A. Bannantine, J.J. Comer, J.L. Handrock, “Fundamentals of metal fatigue analysis”, Prentice Hall, Englewood Cliffs, 1990.
or evenly, but the textbook is just partially dedicated to the above topics:
1.J. Beer, S.Johnston - "Solid mechanics", McGraw-Hill.

Slides; Dispense; Esercizi risolti; Video lezioni tratte da anni precedenti;

Lecture slides; Lecture notes; Exercise with solutions ; Video lectures (previous years);

...
The final exam consists of two written tests, taken in two different dates.
-----
The 1st test is an open-book test and it consists of 3 (three) exercises to be numerically solved.
The test lasts 2 hours. The difficulty level of the exercises is comparable to those solved during the tutorials of the course.
Exercise #1 focuses on the calculation of reactions and internal actions of either a beam assembly or a truss.
Exercise #2 focuses either on the stress field in beams sections or on stress-strain relationships and Mohr circles. Static verification at the maximum stressed points might be asked.
Exercise #3 focuses on fatigue verification of structures subjected to time-varying uniaxial loading conditions.
To take the exam, the student has to show a valid identity document with a clear picture. In absence of this evidence, the candidate will not be allowed to take the exam.
Any student found with any communication device (phones, tablets, laptops, ect…) switched on during the test will be expelled out of the room and his/her test will be invalidated.
The maximum score is 30/30. The minimum score to access the 2nd test is 18/30.
-----
The 2nd test is a closed-book exam and it consists of 3 questions about the contents of the course, requiring a written demonstration, response, calculation or a graphical solution.
Students who attended DexPiLab during the course, will only have to answer to 2 questions.
The test will last 45 minutes.
Any student caught cheating during the exam (i.e. copying solutions from notes or from other candidates) will be expelled out of the room and his/her exam will be invalidated.
----
The 2 tests must be taken in the same exam session, strictly and only on the official dates published through the website of Politecnico di Torino.
For the student to pass the exam, both tests must be evaluated sufficient (minimum score of 18/30). Even if the student only fails the 2nd test the whole exam (1st and 2nd test) shall be completely repeated.
The final mark will be a weighted average of the marks of the 2 tests (final mark = 2/3*A + 1/3*B, with A: mark of the 1st test; B: mark of the 2nd test).

Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.

Exam type: Written exam
Type and number of tests: Written exam (Test 1, mandatory) and oral exam (Test 2, mandatory).
Test 1 (written exam on tutorial topics):
The 1st test is an open-book test and it consists of 3 (three) exercises to be numerically solved.
The test lasts 2 hours. The difficulty level of the exercises is comparable to those solved during the tutorials of the course.
Exercise #1 focuses on the calculation of reactions and internal actions of either a beam assembly or a truss.
Exercise #2 focuses either on the stress field in beams sections or on stress-strain relationships and Mohr circles. Static verification at the maximum stressed points might be asked.
Exercise #3 focuses on fatigue verification of structures subjected to time-varying uniaxial loading conditions.
To take the exam, the student has to show a valid identity document with a clear picture. In absence of this evidence, the candidate will not be allowed to take the exam.
Any student found with any communication device (phones, tablets, laptops, ect…) switched on during the test will be expelled out of the room and his/her test will be invalidated.
The maximum score is 30/30. The minimum score to access the 2nd test is 18/30.
Exam type: Oral exam
Test 2 (oral exam on lecture topics).
The 2nd test is a closed-book exam and it consists of 3 questions about the contents of the course, requiring a written demonstration, response, calculation or a graphical solution.
Students who attended DexPiLab during the course, will only have to answer to 2 questions.
The test will last 45 minutes.
Any student caught cheating during the exam (i.e. copying solutions from notes or from other candidates) will be expelled out of the room and his/her exam will be invalidated.
The 2 tests must be taken in the same exam session, strictly and only on the official dates published through the website of Politecnico di Torino.
For the student to pass the exam, both tests must be evaluated sufficient (minimum score of 18/30). Even if the student only fails the 2nd test the whole exam (1st and 2nd test) shall be completely repeated.
Final mark
Final mark: The final mark is computed by taking into account the marks in Test 1 and in Test 2, according to the following rule:
F=2/3 A+1/3 B,
where F denotes the final mark, A is the mark in Test 1 and B is the mark in Test 2.
The final mark F is rounded to the nearest integer value. The minimum mark for passing the exam is 18/30. In case of A=30 and B=30, the final mark F is equal to 30L.

In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.