Servizi per la didattica

PORTALE DELLA DIDATTICA

01OAJQD, 01OAJNE

A.A. 2020/21

Course Language

English

Course degree

Master of science-level of the Bologna process in Mechanical Engineering - Torino

Course structure

Teaching | Hours |
---|

Teachers

Teacher | Status | SSD | h.Les | h.Ex | h.Lab | h.Tut | Years teaching |
---|

Teaching assistant

Context

SSD | CFU | Activities | Area context |
---|---|---|---|

ING-IND/08 | 10 | B - Caratterizzanti | Ingegneria meccanica |

2019/20

The subject aims at providing the basic theoretical knowledge and practical skills to the students that would be needed to face the important technical problems in the experimental measurements of the main physical quantities in the mechanical and energetic fields.

The subject aims at providing the basic theoretical knowledge and practical skills to the students that would be needed to face the important technical problems in the experimental measurements of the main physical quantities in the mechanical and energetic fields.

As an outcome from the subject, the students should be able to understand, design and organize the experimental activities which are usually carried out regularly in University laboratories, the Industry as well as in the Research Institutes.

As an outcome from the subject, the students should be able to understand, design and organize the experimental activities which are usually carried out regularly in University laboratories, the Industry as well as in the Research Institutes.

The students attending this subject should be acquainted with basic knowledge of: mathematics and physics; electricity and fluid-dynamics; mechanics, thermodynamics and heat-transfer, along with Fluid Machinery in general, such as the Internal Combustion Engines, hydraulic pumps, air impellers, and so on.

The students attending this subject should be acquainted with basic knowledge of: mathematics and physics; electricity and fluid-dynamics; mechanics, thermodynamics and heat-transfer, along with Fluid Machinery in general, such as the Internal Combustion Engines, hydraulic pumps, air impellers, and so on.

The main subject topics of the theoretical and applied lectures are:
1. International System of Measurements (SI)
2. Measurement Methods and Experimental Errors
3. System Dynamic Models (zero, first and second order) and Fourier analysis
4. Statistical Data Analysis
5. Basic Electrical Principles (Electrical Components, Bode Plot, Bridges, Operational Amplifiers, Analogical and Numerical Filters)
6. Data Acquisition Systems (DAQ)
7. Instrument connections and Noise protection
8. Temperature measurement
9. Pressure measurement
10. Flow measurement
11. Power measurement
12. Measurement of Combustion products
13. Measurement of displacement
14. Stress and strain measurement

The main subject topics of the theoretical and applied lectures are:
1. International System of Measurements (SI)
2. Measurement Methods and Experimental Errors
3. System Dynamic Models (zero, first and second order) and Fourier analysis
4. Statistical Data Analysis
5. Basic Electrical Principles (Electrical Components, Bode Plot, Bridges, Operational Amplifiers, Analogical and Numerical Filters)
6. Data Acquisition Systems (DAQ)
7. Instrument connections and Noise protection
8. Temperature measurement
9. Pressure measurement
10. Flow measurement
11. Power measurement
12. Measurement of Combustion products
13. Measurement of displacement
14. Stress and strain measurement

Applied lectures (10h)
During the applied lectures the student will solve practical exercises concerning the experimental data analysis, the design of an experimental layout, the choice of a sensor, the design of a measuring chain and the setup of a Digital Acquisition System.
Laboratory Lectures(30h)
The students will extensively work with virtual laboratory based on a notebook, Arduino boards and a breadboard. Virtual instruments like Oscilloscope, Wave Generator, Spectrum Analyser and Digital Filters will be simulated by means of software that are based on the netbook soundcard. The Arduino Boards connected to some devices (LCD, SD Card reader/recorder, …) will be used like a DAQ in order to perform simple experiments. The breadboard allows the realization and test of simple conditioning circuits based on Operational Amplifiers.

Applied lectures (10h)
During the applied lectures the student will solve practical exercises concerning the experimental data analysis, the design of an experimental layout, the choice of a sensor, the design of a measuring chain and the setup of a Digital Acquisition System.
Laboratory Lectures(30h)
The students will extensively work with virtual laboratory based on a notebook, Arduino boards and a breadboard. Virtual instruments like Oscilloscope, Wave Generator, Spectrum Analyser and Digital Filters will be simulated by means of software that are based on the netbook soundcard. The Arduino Boards connected to some devices (LCD, SD Card reader/recorder, …) will be used like a DAQ in order to perform simple experiments. The breadboard allows the realization and test of simple conditioning circuits based on Operational Amplifiers.

Reference Books
Experimental Methods for Engineers - J. P. Holman - McGraw-Hill Inc.
Measurement, Instrumentation and Sensors Handbook - J.G Webster - CRC Press (Optional)
Didactic material provided by the lecturer
The video of the lectures.

Reference Books
Experimental Methods for Engineers - J. P. Holman - McGraw-Hill Inc.
Measurement, Instrumentation and Sensors Handbook - J.G Webster - CRC Press (Optional)
Didactic material provided by the lecturer
The video of the lectures.

The exam consists of: practical, written and oral exams*.
Practical test (1.5 h): The student has to develop of an electronic circuit on a breadboard and a sketch for the Arduino Uno board. The evaluation is: 13/30 for the electronic circuit and sketch handed in and positively tested in 1h; 10/30 for the electronic circuit and sketch handed in and positively tested in 1.5h; a maximum mark of 5/30 for not working electronic circuits and sketches.
Written exam (1.5h): the student has to solve three exercises, which have a value of 5/30 marks each, concerning statistical data analysis, electronic circuits analysis and DAQ setup.
Oral exam: it deals with the theoretical topics covered during the lectures; it provides a maximum mark of 6/30.
The final mark is the sum on the mark obtained in the practical, written and oral exam*.
*Oral Exam is mandatory to pass the subject. The student can attend the oral exam only if the sum of the marks obtained in the practical and written tests are higher than or equal to 12/30.

The exam consists of: practical, written and oral exams*.
Practical test (1.5 h): The student has to develop of an electronic circuit on a breadboard and a sketch for the Arduino Uno board. The evaluation is: 13/30 for the electronic circuit and sketch handed in and positively tested in 1h; 10/30 for the electronic circuit and sketch handed in and positively tested in 1.5h; a maximum mark of 5/30 for not working electronic circuits and sketches.
Written exam (1.5h): the student has to solve three exercises, which have a value of 5/30 marks each, concerning statistical data analysis, electronic circuits analysis and DAQ setup.
Oral exam: it deals with the theoretical topics covered during the lectures; it provides a maximum mark of 6/30.
The final mark is the sum on the mark obtained in the practical, written and oral exam*.
*Oral Exam is mandatory to pass the subject. The student can attend the oral exam only if the sum of the marks obtained in the practical and written tests are higher than or equal to 12/30.

© Politecnico di Torino

Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY

Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY