Servizi per la didattica

PORTALE DELLA DIDATTICA

01PDCOV, 01PDCQW

A.A. 2018/19

Course Language

English

Course degree

Master of science-level of the Bologna process in Computer Engineering - Torino

Master of science-level of the Bologna process in Mechatronic Engineering - Torino

Course structure

Teaching | Hours |
---|---|

Lezioni | 39 |

Esercitazioni in laboratorio | 21 |

Teachers

Teacher | Status | SSD | h.Les | h.Ex | h.Lab | h.Tut | Years teaching |
---|---|---|---|---|---|---|---|

Canale Massimo | Professore Associato | ING-INF/04 | 39 | 0 | 63 | 0 | 3 |

Teaching assistant

Context

SSD | CFU | Activities | Area context |
---|---|---|---|

ING-INF/04 | 6 | C - Affini o integrative | Attività formative affini o integrative |

2018/19

The course is taught in English.
The course provides tools for analysis and design of digital control systems. Both standard and advanced digital control design methodologies and architectures are introduced.

The course is taught in English.
The course provides tools for analysis and design of digital control systems. Both standard and advanced digital control design methodologies and architectures are introduced.

By the end of this course, students will gain the following knowledge and skill:
- Skill in analyzing the dynamics of discrete-time, sampled-data, digital systems by means of models in the discrete-time and/or frequency domains.
- Knowledge of the digital control system requirements.
- Knowledge of the basic digital control approaches and of the related design methodologies.
- Skill in designing digital controller through basic methodologies.
- Knowledge of the main technological and numeric problems in the sampled-data control systems.
- Knowledge of advanced digital control methodologies such as adaptive control and model predictive control.
- Skill in designing digital control systems by means of adaptive control and model predictive control techniques.
- Skill in evaluating control performance by numerical simulation.

By the end of this course, students will gain the following knowledge and skill:
- Skill in analyzing the dynamics of discrete-time, sampled-data, digital systems by means of models in the discrete-time and/or frequency domains.
- Knowledge of the digital control system requirements.
- Knowledge of the basic digital control approaches and of the related design methodologies.
- Skill in designing digital controller through basic methodologies.
- Knowledge of the main technological and numeric problems in the sampled-data control systems.
- Knowledge of advanced digital control methodologies such as adaptive control and model predictive control.
- Skill in designing digital control systems by means of adaptive control and model predictive control techniques.
- Skill in evaluating control performance by numerical simulation.

Knowledge of basic concepts on linear Idynamic systems such as state space and transfer function representations and stability. Knowledge of basic concepts on feedback control systems analysis and design. Skill in designing basic control devices through both time domain (e.g. state feedback) and frequency domain (e.g. loopshaping) approaches. Knowledge of signal and sampling theory fundamentals. Basic skill of Matlab and Simulink.

Knowledge of basic concepts on linear Idynamic systems such as state space and transfer function representations and stability. Knowledge of basic concepts on feedback control systems analysis and design. Skill in designing basic control devices through both time domain (e.g. state feedback) and frequency domain (e.g. loopshaping) approaches. Knowledge of signal and sampling theory fundamentals. Basic skill of Matlab and Simulink.

- Analysis of discrete time, sampled data and digital systems (15 hr)
- Control requirements, structures and architectures of digital control systems (6 hr)
- Digital controller design through analytic approaches (12 hr)
- Realization of digital controllers (3 hr)
- Adaptive control fundamentals (12 hr)
- Model Predictive Control fundamentals(12 hr)

- Analysis of discrete time, sampled data and digital systems (15 hr)
- Control requirements, structures and architectures of digital control systems (6 hr)
- Digital controller design through analytic approaches (12 hr)
- Realization of digital controllers (3 hr)
- Adaptive control fundamentals (12 hr)
- Model Predictive Control fundamentals(12 hr)

Theoretical and methodological lessons will be delivered together with example developments by face-to-face instruction in the classroom. Computer laboratory activities are aimed at developing the student’s skill through proper training. Each student is supposed to practice individually with the aid of laboratory work stations. The primary purpose of the laboratory exercises is to apply the methodologies presented in class, through the use of MatLab and Simulink. During the last week of the course, an exam simulation in the laboratory will be offered.

Theoretical and methodological lessons will be delivered together with example developments by face-to-face instruction in the classroom. Computer laboratory activities are aimed at developing the student’s skill through proper training. Each student is supposed to practice individually with the aid of laboratory work stations. The primary purpose of the laboratory exercises is to apply the methodologies presented in class, through the use of MatLab and Simulink. During the last week of the course, an exam simulation in the laboratory will be offered.

The main reference textbooks are:
(1) K.J. Åström, B. Wittenmark, 'Computer-controlled systems', Prentice-Hall, 1997.
(2) G.F. Franklin, J.D. Franklin and M. Workman, Digital control of dynamic systems, Addison Wesley,1997.
(3) K.J. Åström, B. Wittenmark, 'Adaptive control', Addison-Wesley, 1995.
(4) J.B. Rawlings, D.Q. Mayne, Model Predictive Control: Theory and Design, Nob-Hill Publishing, 2009.
(5) F. Borrelli, A Bemporad, M. Morari, Predictive Control for Linear and Hybrid systems, Cambridge University Press, 2017.
Lecture slides will be available on “Portale della didattica” as well as laboratory practice handouts.

The main reference textbooks are:
(1) K.J. Åström, B. Wittenmark, 'Computer-controlled systems', Prentice-Hall, 1997.
(2) G.F. Franklin, J.D. Franklin and M. Workman, Digital control of dynamic systems, Addison Wesley,1997.
(3) K.J. Åström, B. Wittenmark, 'Adaptive control', Addison-Wesley, 1995.
(4) J.B. Rawlings, D.Q. Mayne, Model Predictive Control: Theory and Design, Nob-Hill Publishing, 2009.
(5) F. Borrelli, A Bemporad, M. Morari, Predictive Control for Linear and Hybrid systems, Cambridge University Press, 2017.
Lecture slides will be available on “Portale della didattica” as well as laboratory practice handouts.

Written exam in computer laboratory lasting 3 hours divided into three parts.
Part I. 2 multiple choice problems for each 4 possible answers are shown, only one of which is correct (maximum score: 6/30). Exact answer: 3 points, wrong answer: -1 point, missing answer: 0 points. Comments on the solution must be provided too: in the absence of any comments a null score is given even in the presence of the correct answer. The goal of this first part of the exam is to verify the understanding of the fundamental theoretical topics of digital control systems.
Part II. 1 “open” question on conceptual topics (maximum score: 10/30). The goal of this part of the exam is to verify the student ability to properly express and elaborate either theoretical issues or conceptual problems.
Part III. 1 digital control design problem (maximum score: 17/30). The goal of this part of the exam is to verify the student skinless in designing a digital control system. A well motivated detailed report on the employed design procedure is required.
The final grade is the sum of the scores achieved in the three parts.
Detailed instructions and rules will be presented during the course.

Written exam in computer laboratory lasting 3 hours divided into three parts.
Part I. 2 multiple choice problems for each 4 possible answers are shown, only one of which is correct (maximum score: 6/30). Exact answer: 3 points, wrong answer: -1 point, missing answer: 0 points. Comments on the solution must be provided too: in the absence of any comments a null score is given even in the presence of the correct answer. The goal of this first part of the exam is to verify the understanding of the fundamental theoretical topics of digital control systems.
Part II. 1 “open” question on conceptual topics (maximum score: 10/30). The goal of this part of the exam is to verify the student ability to properly express and elaborate either theoretical issues or conceptual problems.
Part III. 1 digital control design problem (maximum score: 17/30). The goal of this part of the exam is to verify the student skinless in designing a digital control system. A well motivated detailed report on the employed design procedure is required.
The final grade is the sum of the scores achieved in the three parts.
Detailed instructions and rules will be presented during the course.

© Politecnico di Torino

Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY

Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY