L'insegnamento presenta la complessità, le criticità e le potenzialità delle missioni spaziali e fornisce agli studenti gli strumenti per la loro progettazione.
Il modulo Propulsione spaziale si propone di fornire agli studenti le nozioni di base riguardanti le principali manovre spaziali e descrivere i sistemi propulsivi per la loro realizzazione, con particolare riferimento alla propulsione elettrica. Vengono presentati i principali metodi per la generazione di spinta nello spazio mediante l’accelerazione elettrotermica, elettrostatica o elettromagnetica di un propellente e descritti i più importanti propulsori elettrici attualmente realizzati o in via di sviluppo. Indicativamente ciascun modulo è articolato in quarantacinque ore di lezione e quindici di esercitazione.
The course presents the complexity, critical aspects and opportunities of space missions and provides tools for their design.
The Space propulsion module aims at providing to the students the basic notions which concern space manoeuvres and at describing the propulsive systems apt at the realization of such manoeuvres, which particular emphasis on electric propulsion. The main methods to obtain thrust in space are presented, considering electrothermal, electrostatic and electromagnetic acceleration of a propellant, and a description of the most common electric propulsion system (both existing and under development) is given. Each module consist of approximately 45 hours of formal lectures and 15 hours of computing classes.
Gli studenti dovranno essere in grado di:
conoscere le principali manovre spaziali e valutarne i requisiti propulsivi;
conoscere in modo approfondito i principali propulsori elettrici, le loro prestazioni e i campi di applicazione;
applicare le conoscenze acquisite per valutare soluzioni propulsive e relative prestazioni in relazione ai requisiti di missione.
The student will acquire the skills needed to:
• understand and deal with different kinds of space missions and the systems devoted to carry out the mission, by using the methods typical of system engineering;
• design and analyse space missions and systems, using methodologies, tools, processes and standards of aerospace engineering;
• deal with issues such as reliability, safety and cost of complex systems and integrate them in the design;
• use the most popular simulation software in support to the design.
In order to enhance the capability of autonomous judgment and the communications skill, the students will be encouraged to:
• Carry out design cases on specific assignments;
• Estimate the order of magnitude of numerical values, that can be reasonably expected in some reference case-studies;
• Write technical reports according to standards commonly used in the aerospace engineering field (ESA and/or NASA);
• Present his/her work to professors and colleagues within a simulated MDR and/or PRR;
• Learn the international terminology, in particular the English terminology.
Knowledge of the main space maneuvers and evaluation of their propulsive requirements and extended knowledge of the most important electric propulsion system and their performance are required.
L’allievo che accede a questo insegnamento deve conoscere le nozioni base della fisica, dalla meccanica alla termodinamica all’elettromagnetismo. Sono inoltre richieste conoscenze di base dei sistemi spaziali, dell’astrodinamica, della propulsione e dei concetti fondamentali dell’elettronica analogica e digitale.
It is necessary that the students who will take this course have good skills in the fields of mathematics and physics. A good general knowledge of the existing types of space systems, astrodynamics, propulsion and electronics is required.
PROPULSIONE SPAZIALE
Principi della propulsione nello spazio Spinta e impulso specifico. Equazione di Tsiolkowski. Perdite di velocità.
Confronto propulsione chimica ed elettrica. Impulso specifico ottimale.
Prestazioni del razzo monostadio e multistadio. Manovre di evasione e cattura, trasferte interplanetarie, flyby.
Richiami di elettromagnetismo, ionizzazione e definizione di plasma. Collisioni tra particelle: classificazione e sezioni d’urto.
Conducibilita’ scalare e parametro di Hall; moto di particelle in campi elettromagnetici variabili.
Propulsione elettrotermica: perdite, propellenti. Resistogetti: particolarita’ costruttive e prestazioni. Arcogetti: particolarita’ costruttive e prestazioni.
Propulsione elettrostatica: rendimento ideale e ionizzazione. Accelerazione elettrostatica: legge di Child ed effetti bidimensionali, accelerazione/decelerazione. Neutralizzazione. Caratteristiche e prestazioni di propulsori elettrostatici. FEEP e colloidal thrusters.
Propulsori a effetto Hall: geometria, funzionamento e prestazioni
Propulsione elettromagnetica: equazioni magnetogasdinamica; propulsori MPD self field: pumping e blowing. Prestazioni di propulsori MPD self-field e applied field.Vasimr.
Propulsione elettromagnetica instazionaria; particolarita’ costruttive e prestazioni di PPT
Generatori di potenza.
Propulsione nucleare, propulsori avanzati, vele solari.
SPACE MISSIONS AND SYSTEMS DESIGN
Lessons:
Study of past and present space missions and overview on future missions.
Space mission elements and their integration: mission concept and mission architecture. The elements: mission object, payload, bus, launch system, orbits, ground systems, operations, communications. The mission segments.
How to define a payload: analysis of the mission object and choice of the payload. Guidelines for payload sizing.
Review of onboard subsystems and their functions. Guidelines for subsystems sizing.
Tools of systems engineering: methods for trade-off and decision making.
Elements and tools of Project Management. Risk and Cost analyses.
Space mission design (project work):
Design phases: from conceptual study to the preliminary requirements review (PRR).
Mission objectives definition.
Study of the mission subject.
Methods for analysis and definition of mission requirements and their allocation.
Functional analysis to define mission architecture and functional requirements.
Methods to trade-off alternative architectures.
Methodologies, techniques and tools for primary system development.
Mission geometry definition. Constraints and requirements review.
Designing and sizing the payload, the space support systems and the ground system.
Project budgets development.
Design of the verification campaign for qualification and acceptance.
Dependability and safety analysis. Cost analysis.
Speeches given by external experts and representatives from aerospace companies and agencies.
SPACE PROPULSION
Principles of space propulsion. Thrust and specific impulse. Tsiolkowski's equation. Velocity losses.
Comparison of chemical and electric propulsion. Optimal specific impulse.
Single-stage and multi-stage rocket performance. Escape and capture maneuvers, interplanetary transfers, flyby.
Electromagnetism, ionization and definition of plasma. Collisions between particles: types of collision, cross sections.
Scalar electric conductivity and Hall parameter; particle motion in varying electromagnetic fields.
Electrothermal propulsion; typical losses and propellant. Resistojets: characteristics and performance. Arcjets: characteristics and performance.
Electrostatic propulsion: ionization and ideal efficiency. Electrostatic acceleration: Child's law and two-dimensional effects, acceleration-deceleration concept. Neutralization. Characteristics and performance of electrostatic thrusters. FEEP and colloidal thrusters.
Hall's effect thrusters: geometry, operations, and performance.
Electromagnetic propulsion: magnetoplasmadynamics equations; self-field MPD thrusters: pumping e blowing. Performance of self-field and applied-field MPD thrusters. Vasimr.
Unsteady electromagnetic propulsion; PPT characteristics and performance.
Power generators.
Nuclear propulsion, advanced propulsion concepts, solar sails.
PROPULSIONE SPAZIALE
Accanto alle lezioni teoriche, durante l'insegnamento si terranno esercitazioni sulla determinazione dell'impulso specifico ottimale per una data missione e sull'analisi delle prestazioni di propulsori elettrici.
SPACE MISSIONS AND SYSTEMS DESIGN
An assignment will be proposed to develop a space mission design. The students, split into separate teams, will deal with the design of a space mission in response to specific stakeholders needs. The themes of the assignment are expression of most recent trends in the aerospace research field.
The assignment is configured as a project work during which methods, techniques and tools presented during the lectures are applied and tested to a real case, following the hands-on-practice approach. The project work is the most important part of the course, and it takes at least half course time duration.
Several tools will be used during the development of the design, depending upon the design phase and specific needs. In addition to the most popular software for analysis (Matlab Simulink, Excel), specific software suites will be used for the purpose (SolidWorks, GMAT/ASTOS/STK). During the project work additional reference material and tolls can be given depending upon the needs. The project work is carried out for the most part in the information laboratory under the supervision of professor and her research team. The project work shall be reported in the final report and presented through presentations.
SPACE PROPULSION
In addition to theoretical lessons, numerical exercises will be performed, for the determination of the optimal specific impulse for a given space mission and the performance analysis of electric thrusters.
PROPULSIONE SPAZIALE
R. G. Jahn, Physics of Electric Propulsion, Prima Edizione, McGraw-Hill, New York, NY, 1968.
L. Casalino Dispense disponibili sul portale della didattica.
SPACE MISSIONS AND SYSTEMS DESIGN
Specific reference material has been prepared by professor and is made available to the students on the web (lecture notes are provided in English).
The following reference textbooks are also suggested (some of them are available on the web, others can be borrowed from the library):
Space Mission Analysis and Design (SMAD), 3rd Edition, W.J. Larson and J.R. Wertz, Space Technology Library, Vol. 8
Space Mission Engineering: The New SMAD, J.R. Wertz, D.F. Everett, J.J. Puschell, Space Technology Library, Vol. 28
Elements of Spacecraft Design, C.D. Brown, AIAA Education Series
Mission Geometry; Orbit and Constellation Design and Management, J.R. Wertz et alii, Space Technology Library, Vol. 13
Human Spaceflight; Mission analysis and Design, W.J. Larson, Space Technology Series, McGraw Hill
ECSS standards (http://www.ecss.nl/)
NASA System Engineering Handbook, NASA/SP-2007-6105, Rev1.
SPACE PROPULSION
R. G. Jahn, Physics of Electric Propulsion, first edition, McGraw-Hill, New York, NY, 1968.
L. Casalino Handouts available on the course site.
Modalità di esame: Prova orale obbligatoria;
Exam: Compulsory oral exam;
...
PROPULSIONE SPAZIALE
L’esame è orale (30-40 minuti). Consiste in due o tre domande, sviluppate attraverso la discussione teorica e/o lo svolgimento di brevi calcoli, volte ad accertare la conoscenza delle caratteristiche costruttive, dei principi di funzionamento e delle prestazioni dei propulsori spaziali, e delle caratteristiche delle principali manovre spaziali.
Voto massimo 30 e lode
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Exam: Compulsory oral exam;
SPACE MISSIONS AND SYSTEMS DESIGN
At the end of the course, an examination takes place to test the knowledge of the student. Each student shall attend the examination on both theory and project work. Each student shall present and defend his/her project work during the oral exam. It is suggested that the student brings his/her own report copy. The report shall be submitted in advance on the webpage of the course for examination by the professor (due date will be communicated during the term). The final mark is given on the basis of the overall work done by the student during the project work (verified in particular during PDR/CDR presentations) and the result achieved in the final oral exam.
SPACE PROPULSION
Oral examination. The exam consists in two or three questions about the course program, with discussion and execution of simple calculations to assess the acquisition of the required knowledge.
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.