Servizi per la didattica
PORTALE DELLA DIDATTICA

Earthquake Engineering

01RWMMX

A.A. 2020/21

Course Language

Inglese

Course degree

Master of science-level of the Bologna process in Civil Engineering - Torino

Course structure
Teaching Hours
Lezioni 60
Esercitazioni in aula 20
Tutoraggio 20
Teachers
Teacher Status SSD h.Les h.Ex h.Lab h.Tut Years teaching
Ceravolo Rosario Professore Associato ICAR/09 50 10 0 0 4
Teaching assistant
Espandi

Context
SSD CFU Activities Area context
ICAR/09 8 B - Caratterizzanti Ingegneria civile
2020/21
The course is intended to provide principles and practices involved in approaching current problems in earthquake engineering. After an introduction to the subject of dynamical systems, the course will present modern solutions to questions concerned with the seismic response of structures, as well as seismic design. Exercise lessons, consisting of both numerical and design applications, aim at introducing students to handling efficient structural dynamics tools, so helping them to competently use international standards and rules for earthquake resistant structures.
The course is intended to provide principles and practices involved in approaching current problems in earthquake engineering. After an introduction to the subject of dynamical systems, the course will present modern solutions to questions concerned with the seismic response of structures, as well as seismic design. Exercise lessons, consisting of both numerical and design applications, aim at introducing students to handling efficient structural dynamics tools, so helping them to competently use international standards and rules for earthquake resistant structures.
- Knowledge and understanding of problems in earthquake engineering and structural dynamics, and their formulation in a structural engineering context; - Knowledge and understanding of methodologies for the assessment of seismic risk from regional to local scale; - Applying knowledge and understanding of seismic design tools and methodologies.
- Knowledge and understanding of problems in earthquake engineering and structural dynamics, and their formulation in a structural engineering context; - Knowledge and understanding of methodologies for the assessment of seismic risk from regional to local scale; - Applying knowledge and understanding of seismic design tools and methodologies.
Basic knowledge of mathematics, mechanics and structural engineering.
Basic knowledge of mathematics, mechanics and structural engineering.
- Single degree of freedom (SDoF) systems (8 h) Response of the damped linear oscillator to harmonic and periodic excitation. Response to arbitrary excitation: frequency domain and time domain analysis. Response to stochastic excitation: temporal correlation and covariance; power spectral density; transfer functions. Response spectra. Experimental evaluation of damping. Direct integration of the equations of motion, time stepping methods. Basic concepts of seismic isolation. - Multiple Degree Of Freedom (MDoF) systems (6 h) Modal analysis of discretized systems. Non-classically damped systems. Distributed mass systems. Use of FEM in earthquake engineering and dynamics. Concepts of experimental modal analysis. - Analytical dynamics (4 h) Hamilton’s principle and Lagrange’s equations - Seismic risk (6 h) Concepts of applied seismology, attenuation relationships and seismic scales. Seismic hazard analysis, Cornell’s method. Vulnerability of exposed values. - Structural analysis in seismic areas (8 h) Elastoplastic oscillator and ductility demand. Design response spectra. Linear and non-linear (push-over) static analysis. Modal analysis: response spectrum analysis; response history analysis with artificial accelerograms; frequency response analysis with spectral energy. - Earthquake resistant building design (12 h) Experiences learned from recent earthquakes: masonry, reinforced concrete, steel etc. Global ductility criteria and capacity design. Local ductility criteria and structural detailing for seismic areas. Rules for reinforced concrete buildings. Rules for existing masonry buildings. Systems and devices for passive, hybrid, semiactive and active control. Dynamic and seismic monitoring. Seismic protection of cultural heritage assets.
- Single degree of freedom (SDoF) systems (8 h) Response of the damped linear oscillator to harmonic and periodic excitation. Response to arbitrary excitation: frequency domain and time domain analysis. Response to stochastic excitation: temporal correlation and covariance; power spectral density; transfer functions. Response spectra. Experimental evaluation of damping. Direct integration of the equations of motion, time stepping methods. Basic concepts of seismic isolation. - Multiple Degree Of Freedom (MDoF) systems (6 h) Modal analysis of discretized systems. Non-classically damped systems. Distributed mass systems. Use of FEM in earthquake engineering and dynamics. Concepts of experimental modal analysis. - Analytical dynamics (4 h) Hamilton’s principle and Lagrange’s equations - Seismic risk (6 h) Concepts of applied seismology, attenuation relationships and seismic scales. Seismic hazard analysis, Cornell’s method. Vulnerability of exposed values. - Structural analysis in seismic areas (8 h) Elastoplastic oscillator and ductility demand. Design response spectra. Linear and non-linear (push-over) static analysis. Modal analysis: response spectrum analysis; response history analysis with artificial accelerograms; frequency response analysis with spectral energy. - Earthquake resistant building design (12 h) Experiences learned from recent earthquakes: masonry, reinforced concrete, steel etc. Global ductility criteria and capacity design. Local ductility criteria and structural detailing for seismic areas. Rules for reinforced concrete buildings. Rules for existing masonry buildings. Systems and devices for passive, hybrid, semiactive and active control. Dynamic and seismic monitoring. Seismic protection of cultural heritage assets.
Both numerical and design applications will be developed. Students will be introduced to Matlab libraries and tools for solving earthquake engineering and dynamics problems. - Calculation of the dynamic and seismic response of elementary structures, in time and frequency domains. Seismic isolation and vibration reduction. (16 h) - Modal analysis: application to the dynamic response of framed structures subjected to real or artificial ground motions. (10 h) - Multi-modal response spectrum analysis in accordance with Eurocode 8. Application to the seismic design, adaptation, or control of a building. (20 h)
Both numerical and design applications will be developed. Students will be introduced to Matlab libraries and tools for solving earthquake engineering and dynamics problems. - Calculation of the dynamic and seismic response of elementary structures, in time and frequency domains. Seismic isolation and vibration reduction. (16 h) - Modal analysis: application to the dynamic response of framed structures subjected to real or artificial ground motions. (10 h) - Multi-modal response spectrum analysis in accordance with Eurocode 8. Application to the seismic design, adaptation, or control of a building. (20 h)
Reference textbooks: Italian and European standards for constructions in seismic areas Lecture notes of the Earthquake Engineering course. Other readings: - Dynamics of structures / Ray W. Clough, Joseph Penzien, 1993. - Dynamics of structures: theory and applications to earthquake engineering/ Anil K. Chopra, 2005. - Fundamentals of earthquake engineering / Nathan M. Newmark, Emilio Rosenblueth, 1971. - Theoretical and experimental modal analysis/ Nuno MM Maia, Julio MM Silva, 1997. - Reinforced concrete structures / R. Park, T. Paulay, 1990 - Analisi sismica per livelli di conoscenza del patrimonio architettonico / Rosario Ceravolo, Giacomo V. Demarie, 2009
Reference textbooks: Italian and European standards for constructions in seismic areas Lecture notes of the Earthquake Engineering course. Other readings: - Dynamics of structures / Ray W. Clough, Joseph Penzien, 1993. - Dynamics of structures: theory and applications to earthquake engineering/ Anil K. Chopra, 2005. - Fundamentals of earthquake engineering / Nathan M. Newmark, Emilio Rosenblueth, 1971. - Theoretical and experimental modal analysis/ Nuno MM Maia, Julio MM Silva, 1997. - Reinforced concrete structures / R. Park, T. Paulay, 1990 - Analisi sismica per livelli di conoscenza del patrimonio architettonico / Rosario Ceravolo, Giacomo V. Demarie, 2009
Modalità di esame: Prova orale obbligatoria; Elaborato progettuale in gruppo;
The modalities of the oral exam in video communication will comply with the D.R. 217 of February 28, 2020. In order to take the exam, the student must have appropriate tools: personal computer with webcam or tablet, browser, network connection suitable for carrying out a video conference.
Exam: Compulsory oral exam; Group project;
The modalities of the oral exam in video communication will comply with the D.R. 217 of February 28, 2020. In order to take the exam, the student must have appropriate tools: personal computer with webcam or tablet, browser, network connection suitable for carrying out a video conference.
Modalità di esame: Prova orale obbligatoria; Elaborato progettuale in gruppo;
The modalities of the oral exam in video communication will comply with the D.R. 217 of February 28, 2020. In order to take the exam, the student must have appropriate tools: personal computer with webcam or tablet, browser, network connection suitable for carrying out a video conference.
Exam: Compulsory oral exam; Group project;
The modalities of the oral exam in video communication will comply with the D.R. 217 of February 28, 2020. In order to take the exam, the student must have appropriate tools: personal computer with webcam or tablet, browser, network connection suitable for carrying out a video conference.


© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
Contatti