Servizi per la didattica
PORTALE DELLA DIDATTICA

Energy Challenges and Environmental Sustainability

01SOSQA

A.A. 2022/23

Course Language

Inglese

Course degree

Master of science-level of the Bologna process in Pianificazione Territoriale, Urbanistica E Paesaggistico-Ambientale - Torino

Course structure
Teaching Hours
Lezioni 32
Esercitazioni in aula 8
Tutoraggio 20
Teachers
Teacher Status SSD h.Les h.Ex h.Lab h.Tut Years teaching
Mutani Guglielmina Professore Associato ING-IND/11 32 8 0 0 5
Teaching assistant
Espandi

Context
SSD CFU Activities Area context
ING-IND/11 4 C - Affini o integrative Attività formative affini o integrative
2022/23
The course is aimed at acquiring a thorough knowledge of the technologies for energy savings, considering their environmental impact where possible the exploitation of renewable energy sources. The most common technologies will be analysed, with reference to their functional characteristics, their integration into the urban context, the criteria for choosing between the technical and economic alternatives, their location aspects and economic incentives. Constitute topics of the course: - Action Plans for Energy and Environmental Protocols that combine the achievement of energy savings with minimal impact on the environment, land and human health - Technologies for the production of energy from renewable sources and their availability on a regional scale - Assessment of energy requirements for buildings on an urban scale - Energy saving technologies in the residential sector - Tools for the control of energy saving and of noise and light pollution.
The course is aimed at acquiring a thorough knowledge of the technologies for energy savings, considering their environmental impact where possible the exploitation of renewable energy sources. The most common technologies will be analysed, with reference to their functional characteristics, their integration into the urban context, the criteria for choosing between the technical and economic alternatives, their location aspects and economic incentives. Constitute topics of the course: - Action Plans for Energy and Environmental Protocols that combine the achievement of energy savings with minimal impact on the environment, land and human health - Technologies for the production of energy from renewable sources and their availability on a regional scale - Assessment of energy requirements for buildings on an urban scale - Energy saving technologies for buildings in the residential sector - Tools for the control of energy saving and of noise and light pollution.
Ability to: - Analyze the characteristics of the built territory by assessing the main impacts in terms of climate, energy resources and finally air, noise and light pollution - Assess the needs and criteria of territorial distribution of energy consumptions and energy sources. EN: could be interesting to follow the courses: Technology for renewable energy sources, Energy savings and comfort in buildings and Models and scenarios for energy planning (Ingegneria Energetica e Nucleare).
Ability to: - Model the spatial distribution of energy consumption and energy production - Apply energy consumption models considering the characteristics of each building of a city - Apply energy production models considering the availability of renewable energy sources - Evaluate the more effective retrofit interventions to reduce energy consumptions - Evaluate the more effective renewable energy sources and technologies to reduce greenhouse gas emissions - Improve energy independence at territorial level boosting the renewable energy sources - Analyze the characteristics of the built territory by assessing the main impacts in terms of climate, energy resources and finally air, noise and light pollution
Knowledge of the fundamentals of: energy efficiency of residential systems, renewable technologies, thermodynamics, light, acoustics; and know how to use GIS software.
Knowledge of the fundamentals of: thermodynamics, light, acoustics; energy performance of buildings, energy efficiency interventions, renewable technologies; and know how to use ArcGIS and QGIS software.
The course is structured around the following themes: - Assessment of energy needs for space heating and domestic hot water production of the residential building stock in Turin; considerations on the age and on the compactness of the buildings (through the surface to volume ratio S/V). - Feasibility of using solar energy at the regional, municipal and district scale; - Feasibility of the technologies that use forest biomass at local scale and considerations on supply energy; - Improvement the energy efficiency solutions and the effectiveness of the different retrofit interventions - Evaluation on energy policies that could be implemented on the territory.
The course is structured around the following themes: - Assessment of energy needs for space heating and domestic hot water production of the residential building stock in Turin; considerations on the age and on the compactness of the buildings (through the surface to volume ratio S/V). - Feasibility of using solar energy at the regional, municipal and district scale; - Feasibility of the technologies that use forest biomass at local scale and considerations on supply energy; - Improvement the energy efficiency solutions and the effectiveness of the different retrofit interventions - Evaluation on energy policies that could be implemented on the territory.
The hours of teaching can be divided into hours of theoretical lectures and practical lessons. Practical lessons consist in the development of the analysis of the site relative to one or more areas on the territory, in particular analyzing energy consumptions and the available renewable energy sources. It is required the development of numerical exercises using GIS software.
The hours of teaching can be divided into hours of theoretical lectures and practical lessons. Practical lessons consist in the development of the analysis of the site relative to one or more areas on the territory, in particular analyzing energy consumptions and the available renewable energy sources. It is required the development of numerical exercises using GIS software.
- Duffie & Beckman, Solar Engineering of Thermal Processes, John Wiley & sons, 4th edition, New York 2013. - Peter Gevorkian, Sustainable energy systems in architectural design: a blueprint for green building, New York: McGraw-Hill, 2006 - P. Gevorkian, Sustainable energy systems engineering: the complete green building design resource, New York: McGraw-Hill, 2006 - B. Sorensen, Renewable Energy: Physics, Engineering, Environmental Impacts, Economics, Elsevier Associated Press, London, 2004 - Tiwari G.N., Solar Energy - Fundamentals, Design, Modelling, and Applications, CRC Press, 2002 - J.A. Clarke, Energy simulation in building design, 2nd ed., Oxford: Butterworth Heinemann, 2001 - Moncef Krarti, Energy audit of building systems: an engineering approach, Boca Raton: CRC, 2000 - ASHRAE Handbook of Fundamentals, available at the Library of Department of Energy - Training material, software and data on: http://www.retscreen.net/ang/home.php. - Older texts on these subjects are: - Neville S. Billington, Building physics: heat, Oxford: Pergamon, 1976 - Baruch Givoni, Man, climate and architecture, Amsterdam: Elsevier, 1969 - Victor Olgyay, Design with climate : bioclimatic approach to architectural regionalism, New York: Van Nostrand Reinhold, 1992 - Baruch Givoni, Passive and low energy cooling of buildings, New York: Reinhold, 1994 - Community Energy International case studies, Dr Neil Simcock, Rebecca Willis and Peter Capener, in association with Lancaster Environment Centre – Lancaster University, Published by The British Academy in 2016.
- Duffie & Beckman, Solar Engineering of Thermal Processes, John Wiley & sons, 4th edition, New York 2013. - Peter Gevorkian, Sustainable energy systems in architectural design: a blueprint for green building, New York: McGraw-Hill, 2006 - P. Gevorkian, Sustainable energy systems engineering: the complete green building design resource, New York: McGraw-Hill, 2006 - B. Sorensen, Renewable Energy: Physics, Engineering, Environmental Impacts, Economics, Elsevier Associated Press, London, 2004 - Tiwari G.N., Solar Energy - Fundamentals, Design, Modelling, and Applications, CRC Press, 2002 - J.A. Clarke, Energy simulation in building design, 2nd ed., Oxford: Butterworth Heinemann, 2001 - Moncef Krarti, Energy audit of building systems: an engineering approach, Boca Raton: CRC, 2000 - ASHRAE Handbook of Fundamentals, available at the Library of Department of Energy - Training material, software and data on: http://www.retscreen.net/ang/home.php. - Older texts on these subjects are: - Neville S. Billington, Building physics: heat, Oxford: Pergamon, 1976 - Baruch Givoni, Man, climate and architecture, Amsterdam: Elsevier, 1969 - Victor Olgyay, Design with climate : bioclimatic approach to architectural regionalism, New York: Van Nostrand Reinhold, 1992 - Baruch Givoni, Passive and low energy cooling of buildings, New York: Reinhold, 1994 - Community Energy International case studies, Dr Neil Simcock, Rebecca Willis and Peter Capener, in association with Lancaster Environment Centre – Lancaster University, Published by The British Academy in 2016.
Modalità di esame: Prova orale obbligatoria; Elaborato scritto prodotto in gruppo;
Exam: Compulsory oral exam; Group essay;
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Exam: Compulsory oral exam; Group essay;
Individual check on the topics covered in the course with an oral discussion starting with the presentation of the exercises. The oral examination assesses the knowledge of all theoretical issues of the course and of technical language. Moreover, it is also required to describe which input data were used and with which methodology the results were obtained. The oral exam lasts about 30-40 minutes and the students present the 4 exercises done in groups (2-3 students per group). About 2-3 questions are asked per exercise (about 10 questions). The evaluation given to the exercises allows to start from an initial judgment: poor 16-19, sufficient 20-23, good 24-27, excellent 28-30L. The vote of the oral exam averages with the vote of the exercises and the final evaluation is given to the group or, in case of different preparation, to individual students.
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.
Esporta Word


© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
Contatti