Corso di Laurea Magistrale in Ingegneria Energetica E Nucleare - Torino Corso di Laurea Magistrale in Ingegneria Per L'Ambiente E Il Territorio - Torino
Il corso "Operazioni Unitarie nei Processi Chimici Industriali" si concentra sull'analisi e la progettazione delle operazioni unitarie, che rappresentano i blocchi fondamentali di ogni processo industriale chimico. Le operazioni unitarie sono quei processi fisici, chimici o fisico-chimici, che permettono la trasformazione, separazione o trasferimento di materia ed energia all'interno di un impianto. Esse costituiscono l'essenza della progettazione industriale poiché ogni processo chimico può essere scomposto in una serie di operazioni unitarie specifiche, come il trasferimento di calore, la distillazione, la filtrazione e l'evaporazione.
Queste operazioni sono ampiamente utilizzate per gestire le fasi di produzione e trasformazione in numerosi settori industriali, come la chimica di base, la farmaceutica, l'alimentare, l'energia, e permettono di realizzare processi efficienti e sicuri, riducendo al minimo gli sprechi e l’impatto ambientale.
The "Unit Operations in Industrial Chemical Processes" course focuses on the analysis and design of unit operations, which represent the fundamental blocks of every chemical industrial process. Unit operations are those physical, chemical or physico-chemical processes that allow the transformation, separation or transfer of matter and energy within a plant. They constitute the essence of industrial design since each chemical process can be broken down into a series of specific unit operations, such as heat transfer, distillation, filtration and evaporation.
These operations are widely used to manage the production and transformation phases in numerous industrial sectors, such as basic chemistry, pharmaceuticals, food, energy, and allow the creation of efficient and safe processes, reducing waste to a minimum and the environmental impact.
Gli studenti acquisiranno le conoscenze e le competenze necessarie per comprendere, progettare e ottimizzare le operazioni unitarie nei processi chimici industriali, essenziali per migliorare l'efficienza e la sostenibilità dei sistemi produttivi.
Per quanto attiene invece l’applicazione pratica delle conoscenze acquisite, gli studenti saranno in grado di:
- Effettuare il dimensionamento di massima di comuni apparecchiature
- Valutare le condizioni operative ottimali per le differenti operazioni unitarie
(EN)
The students will acquire the knowledge and skills necessary to understand, design and optimize unit operations in industrial chemical processes, essential to improve the efficiency and sustainability of production systems.
As regards the practical application of the knowledge acquired, students will be able to:
- Perform the rough sizing of common equipment
- Evaluate the optimal operating conditions for different unit operations
Aim of the course is to provide a basic knowledge about the chemical and technological evaluation of crude oils and its fractions to be used as raw materials for industrial processes either for fuels or chemicals production.
The student will learn about the analytical, scientific and technological methods useful for the oil and gas characterization and processing and will acquire a clear picture of the surface facilities, refinery and petrochemical processes, involved in the transformation of petroleum into commercial fuels and other commodity products. Moreover, a focus will be given surface facilities for natural gas purification for its further selling.
At the end of the course, it is expected that the student: knows how to characterize and identify the quality of a crude oil, either for economical or technological purposes; knows the main processes for oil and gas processing (e.g. distillation, absorption, adsorption, among others); is able to use a process simulator to perform complex mass and energy balances (e.g. of distillation units) and to optimize process conditions; has the capacity to evaluate the suitability of a hydrocarbons mixture to be used as a raw material for fuels production or for chemical transformations through petrochemical processes; is able to make a preliminary estimation of the efficiency of a process based on energy and mass balances.
Per affrontare efficacemente un corso come "Operazioni Unitarie nei Processi Chimici Industriali", è necessario possedere una solida base di conoscenze nei seguenti ambiti:
- È fondamentale comprendere i concetti di base della chimica, come le leggi dei gas, le soluzioni, gli equilibri chimici e le interazioni intermolecolari, oltre alla termodinamica chimica. Questi concetti sono essenziali per comprendere gli equilibri liquido-vapore, i meccanismi di separazione e i processi di reazione.
- Una buona conoscenza della termodinamica è cruciale per comprendere i principi di conservazione dell'energia e di trasferimento di calore e massa, che sono alla base delle operazioni unitarie come scambiatori di calore, evaporatori e distillazione.
- I concetti fisici relativi a meccanica dei fluidi, trasporto di calore e trasporto di materia sono indispensabili per analizzare i meccanismi di trasferimento e per progettare apparecchiature come scambiatori di calore, condensatori e impianti di evaporazione.
- Familiarità con i concetti base di ingegneria chimica, come bilanci di materia ed energia, e una conoscenza di base dei processi industriali sono utili per affrontare con successo la progettazione e l'analisi delle operazioni unitarie
- Conoscenze relative al calcolo differenziale e integrale.
(EN)
To effectively tackle a course such as "Unit Operations in Industrial Chemical Processes", it is necessary to have a solid foundation of knowledge in the following areas:
- It is essential to understand the basic concepts of chemistry, such as gas laws, solutions, chemical equilibria and intermolecular interactions, as well as chemical thermodynamics. These concepts are essential to understand liquid-vapor equilibria, separation mechanisms and reaction processes.
- A good knowledge of thermodynamics is crucial to understand the principles of energy conservation and heat and mass transfer, which are the basis of unit operations such as heat exchangers, evaporators and distillation.
- The physical concepts related to fluid mechanics, heat transport and mass transport are indispensable to analyze the transfer mechanisms and to design equipment such as heat exchangers, condensers and evaporation plants.
- Familiarity with basic chemical engineering concepts, such as mass and energy balances, and a basic understanding of industrial processes are useful to successfully address the design and analysis of unit operations
- Knowledge of differential and integral calculus.
Student should have an average background on basic concepts of mathematics and chemistry.
It is preferrable to have knowledge of mass balances.
It is hepful to be skilled in the use of widespread word and data processing software like Excel.
L’insegnamento è così suddiviso:
- Equilibri liquido-vapore ideali e reali senza reazione chimica. Progettazione di massima di una unità Flash per la separazione di miscele liquido-vapore. (10.5 h – Prof. Buffo)
- Meccanismi di trasporto di materia senza e con reazione chimica. Applicazione dei principi di conservazione di materia e opportuna definizione dei flussi. (10.5 h – Prof. Artusio)
- Scambiatori di calore con e senza passaggio di stato, uso del vapore saturo come mezzo riscaldante. Condensatori. (7.5 h Prof.ssa Hernandez).
- Evaporatori e Impianti di concentrazione. Condensatori barometrici (12 h Prof.ssa Simone).
- Operazioni Unitarie Fisiche. Filtrazione, comminuzione, separazione solido-solido. (7.5 h Prof.ssa Simone)
- Distillazione (12 h Prof.ssa Hernandez).
Sono previste almeno 15 h di esercitazioni in aula di scambiatori di calore, distillazione e altre operazioni unitarie.
Sono previste 6 h di laboratorio per sperimentare (Prof.ssa Chiampo) con varie tipologie di scambiatori e altre operazioni unitarie fra quelli studiati.
(EN)
The course is divided as follows:
- Ideal and real liquid-vapor equilibria without chemical reaction. Preliminary design of a Flash unit for the separation of liquid-vapor mixtures. (10.5 h – Prof. Buffo)
- Mechanisms of mass transport without and with chemical reaction. Application of the principles of conservation of matter and appropriate definition of flows. (10.5 h – Prof. Artusio)
- Heat exchangers with and without phase transition, use of saturated steam as a heating medium. Condensers. (7.5 h Prof.ssa Hernandez).
- Evaporators and concentration plants. Barometric condensers (12 h Prof.ssa Simone).
- Physical Separation processes: Filtration, comminution, solid-solid separation, crystallization (7.5 h Prof.ssa Simone)
- Distillation (12 h Prof.ssa Hernandez).
At least 15 hours of classroom exercises on heat exchangers, distillation and other unit operations are planned.
6 hours of laboratory work are planned to experiment with various types of exchangers and other unit operations among those studied.
Economic, societal and environmental background of the petrol industry (3h).
Crude oil and natural gas composition (6h). Aliphatic and aromatic hydrocarbons classification and properties. Functional groups and organic molecules: carboxylic acids, esters, ethers, thiols, aldehydes, ketons, amines, amides, alkyloyl chlorides, alkyl chlorides. Chemical structures. IUPAC nomenclature and trivial names. Petroleum composition and chemical classification. C/H ratio. Sulfur, nitrogen and oxygen compounds in petroleum. Naphtenic acids recovery. Inorganic components.
Theoretical evaluation of the combustion heat (9h). Safety criteria in hydrocarbon handling. Flash point and flammability limits. Exercises on this matter.
Crude Oils characterization methods (3h). ASTM, TBP and EFV distillation curves. Distillate yields. Mean boiling points. Key fractions. Sulphur content. Density and boiling point correlation with chemical composition. Correlation index. Property diagrams. Definition of the pseudocomponent composition from the oil distillation curve. Properties and composition of commercial gasoline, kerosene, jet fuel, diesel, lubricants, waxes and lubricants. Standard methods of characterisation.
Petroleum refining (9h). Oil desalting. Principles of distillation processes. Vapour-liquid equilibrium diagrams. Ideal and real behaviour of liquid mixtures. Separation of azeotropic mixtures. Oil distillation processes at atmospheric pressure and under vacuum. Overlapping of distillation curves. Sulfur removal from gaseous and liquid fractions. Hydrocarbon conversion processes (e.g. catalytic cracking, alkylation, oligomerisation, isomerisation, catalytic reforming). Mass and Energy Balance of processes for oil purification and/or conversion. Blending and additives for commercial fractions. Olefins from thermal cracking. Aromatics by liquid-liquid extraction. Mass and Energy balances of those processes.
Natural gas (NG) composition, classification and purification in surface facilities (9h). Acid gases (CO2 and Sulphur-based molecules in NG). Natural gasoline, LPG. Mass and Energy Balance of processes for natural gas purification and/or conversion. Chemical and physical processes for natural gas sweetening (removal of acid gases such as absorption, adsorption and membranes). Gas dehydration processes.
Industrial chemical processes (6h). Schemes of industrial chemical processes. Separation units. Reactors. Chemical equilibrium and kinetics. Catalysts. Influence of temperature and pressure on conversion and yield. Examples of industrial processes for commodities production. Mass and Energy Balance of processes for chemicals production. Petrochemical industry: raw, base, intermediate and end user products.
Sustainability in the oil and gas industry (3h). Industrial principles of sustainability and strategies for performing sustainable industrial processes to deal with climate change issues, based on the 12 principles of green chemistry.
Simulation of industrial processes (12h) Introduction to a professional process simulation software (Aspen Plus). Set up of practical exercises (e.g. distillation). Sensitivity analysis for process optimization.
Timelines are indicative and can vary based on the students needs.
In relation to the Sustainable Development Goals 9 and 13, the course will introduce the main issues related to Climate Change and the use of fossil fuels as main primary energy source. Some of the 12 principles of green chemistry will be introduced to develop sustainable industrial processes and strategies for dealing with climate change issues from the source of the main Green House Gases (GHGs, i.e. CO2 and CH4) emissions in the gas and oil industry.
In relation to the Sustainable Development Goals 9 and 13, the course will introduce the main issues related to Climate Change and the use of fossil fuels as main primary energy source. Some of the 12 principles of green chemistry will be introduced to develop sustainable industrial processes and strategies for dealing with climate change issues from the source of the main Green House Gases (GHGs, i.e. CO2 and CH4) emissions in the gas and oil industry.
L’insegnamento si svolge mediante lezioni frontali nelle quali vengono presentati gli argomenti in programma.
Le esercitazioni in aula verteranno sul calcolo del Flash per miscele liquido-vapore, riempimento/svuotamento di serbatoi, derivazione di profili di concentrazione in assenza e in presenza di reazione chimica, progettazione di apparecchiature o verifica di apparecchiature esistenti.
Le esercitazioni in laboratorio vengono svolte nel laboratori di Impianti Chimici con apparecchiature a scala ridotta che simulano i processi reali.
(EN)
The teaching is carried out through lectures in which the topics in the program are presented.
The classroom exercises will focus on the calculation of the Flash for liquid-vapor mixtures, filling/emptying of tanks, derivation of concentration profiles in the absence and presence of chemical reaction, design of equipment or verification of existing equipment.
The laboratory exercises are carried out in the laboratories of Chemical Plants with small-scale equipment that simulate real processes.
Lectures are integrated with numerical exercises: students are asked to solve simple problems connected with the topics of the lesson. A cycle of computing practice is developed in a computing laboratory (LAIB) to design process units (e.g. distillation equipment) through a process simulator (Aspen Plus). Aim of the practice is to become friendly with computing software suitable to design equipment and optimize process parameters to reach designed quality of a product in the chemical industry, and in particular in the field of oil and gas processing. Evaluation of the simulation ability will be performed by analysis of a written report on the obtained results.
Suggested Books:
- I.N. Levine, Physical Chemistry, McGraw-Hill. Paragrafi 4.6,4.7,9.5,9.6,10.1-4,12.6 (Equilibri liquid-vapore ideali e reali)
- S.I. Sandler, Chemical and Engineering Thermodynamics, Wiley. Paragrafo 8.1 (Flash)
- R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, 2nd edition, Wiley, 2002.
- D.Q. Kern: Process Heat Transfer. Ed. Mcgraw-Hill
- Mc Cabe: Unit Operations of Chemical Engineering. Ed. Mcgraw-Hill
- J.M.Coulson, J.F.Richardson: Chemical Engineering, vol 6. Ed. Butterworth-Heinemann.
After each lecture, related texts and eventual exercises will be available on the course site of the web. Besides the subject explained in the lesson, also chapters of technical books useful for a best comprehension and deepening of the lesson topics will be stored on the site. Materials requiring periodic updating will be available before the end of the course.
Slides; Esercizi; Esercitazioni di laboratorio; Video lezioni tratte da anni precedenti;
Lecture slides; Exercises; Lab exercises; Video lectures (previous years);
Modalità di esame: Prova scritta (in aula); Prova orale obbligatoria;
Exam: Written test; Compulsory oral exam;
...
Modalità di esame: Prova scritta (in aula); Prova orale obbligatoria;
Exam: Written test; Compulsory oral exam;
...
L’esame è volto ad accertare la conoscenza degli argomenti elencati nel programma del corso e la capacità di applicare la teoria ed i relativi metodi di calcolo alla soluzione di esercizi. Esso è formato da una prova scritta della durata di un'ora e mezza comprendente esercizi numerici, simili a quelli svolti nelle esercitazioni, che hanno lo scopo di valutare la capacità di eseguire calcoli applicativi, e semplici quesiti teorici, per verificare la conoscenza di base degli argomenti esposti nel corso. Durante lo svolgimento dello scritto non è consentito tenere e consultare appunti, libri o formulari.
Superato lo scritto, lo studente dovrà affrontare una ulteriore prova orale, finalizzata a valutare in profondità la comprensione dei contenuti del corso e la capacità di applicare i risultati teorici visti a lezione.
(EN)
Exam method: Written test (in class); Compulsory oral exam;
Exam: Written test; Compulsory oral exam;
...
The exam is designed to assess knowledge of the topics listed in the course program and the ability to apply the theory and related calculation methods to the solution of exercises. It consists of a written test lasting an hour and a half including numerical exercises, similar to those done in the exercises, which aim to assess the ability to perform application calculations, and simple theoretical questions, to verify the basic knowledge of the topics covered in the course. During the written test, it is not permitted to keep and consult notes, books or forms.
After passing the written test, the student will have to take a further oral test, aimed at assessing in depth the understanding of the contents of the course and the ability to apply the theoretical results seen in class.
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Exam: Written test; Compulsory oral exam;
Written test (compulsory): 100% of final mark;
Oral exam (facultative): If taken, its mark will be averaged with the written test mark to make the final mark;
ASPEN simulation essay (optional): This essay, when completed in a group, can boost your final mark by up to 2 points, providing a valuable opportunity for improvement of the final mark.
Descritpion:
The written exam (2 hours) covers theoretical issues, descriptions of industrial processes, and exercises from the course. It's important to note that the exam is conducted without the use of books or notes.
Students who would like to improve their written exam marks can request an additional oral exam (not mandatory). The oral exam will consist of 3 questions on the theoretical principles and/or descriptions of industrial processes learned during the course. In this case, the final mark will be an average of the oral and written exams.
The students can enhance the final mark (up to 2 points) by working in a group on a computing assignment in ASPEN software. This will be evaluated through an oral presentation.
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.