Servizi per la didattica
PORTALE DELLA DIDATTICA

Geotechnical Earthquake Engineering/Slope stability and Landslide Risk Mitigation

01UAEMX

A.A. 2021/22

Course Language

Inglese

Course degree

Course structure
Teaching Hours
Lezioni 48
Esercitazioni in aula 12
Tutoraggio 20
Teachers
Teacher Status SSD h.Les h.Ex h.Lab h.Tut Years teaching
Teaching assistant
Espandi

Context
SSD CFU Activities Area context
Valutazione CPD 2021/22
2021/22
The dynamic response of the subsoil has a strong influence on seismic risk. Indeed it affects the seismic hazard and the soil-foundation-structure interaction. The course, after the introduction of the basics of seismology and soil dynamics, deals with geotechnical issues of engineering structures under seismic loads.
The dynamic response of the subsoil has a strong influence on seismic risk. Indeed it affects the seismic hazard and the soil-foundation-structure interaction. The course, after the introduction of the basics of seismology and soil dynamics, deals with geotechnical issues of engineering structures under seismic loads.
Understanding of the seismic response of soil deposits and its influence on the seismic hazard for the construction site. Ability to build simplified models for the prediction of the seismic response of site, the analysis of seismic hazards and the analysis of soil-structure interaction.
Understanding of the seismic response of soil deposits and its influence on the seismic hazard for the construction site. Ability to build simplified models for the prediction of the seismic response of site, the analysis of seismic hazards and the analysis of soil-structure interaction.
Basics of Mechanics and of Soil Mechanics
Basics of Mechanics and of Soil Mechanics
•Fundamentals of Engineering Seismology (9h) •Seismic wave propagation in soils (9h) •Behaviour of soils under cyclic and dynamic loads (3h) •Experimental Soil Dynamics (in situ and laboratory testing) (8h) •Seismic site response (12h) •Liquefaction (8h) •Retaining walls (9h) •Soil-structure interaction (6h)
•Fundamentals of Engineering Seismology (9h) •Seismic wave propagation in soils (9h) •Behaviour of soils under cyclic and dynamic loads (3h) •Experimental Soil Dynamics (in situ and laboratory testing) (8h) •Seismic site response (12h) •Liquefaction (8h) •Retaining walls (9h) •Soil-structure interaction (6h)
Practical examples will be presented in the classroom to make the students familiar with the topics of the course. Some practical examples will be devoted to the use of computer softwares for the numerical simulation of geotechnical earthquake engineering problems.
Practical examples will be presented in the classroom to make the students familiar with the topics of the course. Some practical examples will be devoted to the use of computer softwares for the numerical simulation of geotechnical earthquake engineering problems.
Classnotes Testi di approfondimento E. Faccioli, R. Paolucci (2005) “Elementi di sismologia applicata all’ingegneria”, Pitagora Ed., Bologna G. Lanzo, F. Silvestri (1999) “Risposta sismica locale: teoria ed esperienze”, Hevelius, Benevento S.L. Kramer (1996) “Geotechnical Earthquake Engineering”, Prentice-Hall, Englewood Cliffs K.F. Graff (1975) “Wave motion in elastic solids”, Oxford Press Publ. G. Gazetas (1990) “Foundation Vibrations” in Foundation Engineering Handbook (H.Y. Fang Ed.), Kluwer Academic Pub., Boston B.A. Bolt (1986) “I terremoti”, Zanichelli F.E. Jr Richart, Wood R.D., Hall J.R. Jr (1970) “Vibration of soils and foundations”, Prentice-Hall, New Jersey G. Dente (1999) “La risposta sismica dei pali di fondazione”, Hevelius, Benevento
Classnotes Testi di approfondimento E. Faccioli, R. Paolucci (2005) “Elementi di sismologia applicata all’ingegneria”, Pitagora Ed., Bologna G. Lanzo, F. Silvestri (1999) “Risposta sismica locale: teoria ed esperienze”, Hevelius, Benevento S.L. Kramer (1996) “Geotechnical Earthquake Engineering”, Prentice-Hall, Englewood Cliffs K.F. Graff (1975) “Wave motion in elastic solids”, Oxford Press Publ. G. Gazetas (1990) “Foundation Vibrations” in Foundation Engineering Handbook (H.Y. Fang Ed.), Kluwer Academic Pub., Boston B.A. Bolt (1986) “I terremoti”, Zanichelli F.E. Jr Richart, Wood R.D., Hall J.R. Jr (1970) “Vibration of soils and foundations”, Prentice-Hall, New Jersey G. Dente (1999) “La risposta sismica dei pali di fondazione”, Hevelius, Benevento
Modalità di esame: Prova orale obbligatoria; Elaborato scritto individuale;
Exam: Compulsory oral exam; Individual essay;
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Exam: Compulsory oral exam; Individual essay;
The exam is composed by an homework in 3 parts and an oral exam. The homework is intended to provide the practical skills necessary for the quantitative assessment of seismic hazard at a site, including the evaluation of the stability of a retaining structure, which will consider also the evaluation of its performances. The oral exam is intended to evaluate the comprehension of the background theory and to assess the full understanding of the topics covered by the homework. Frading will be based in equal parts on these assessments
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.
Modalità di esame: Prova orale obbligatoria; Elaborato scritto individuale;
Exam: Compulsory oral exam; Individual essay;
The exam is composed by an homework in 3 parts and an oral exam. The homework is intended to provide the practical skills necessary for the quantitative assessment of seismic hazard at a site, including the evaluation of the stability of a retaining structure, which will consider also the evaluation of its performances. The oral exam is intended to evaluate the comprehension of the background theory and to assess the full understanding of the topics covered by the homework. Frading will be based in equal parts on these assessments
Modalità di esame: Prova orale obbligatoria; Elaborato scritto individuale;
Exam: Compulsory oral exam; Individual essay;
The exam is composed by an homework in 3 parts and an oral exam. The homework is intended to provide the practical skills necessary for the quantitative assessment of seismic hazard at a site, including the evaluation of the stability of a retaining structure, which will consider also the evaluation of its performances. The oral exam is intended to evaluate the comprehension of the background theory and to assess the full understanding of the topics covered by the homework. Frading will be based in equal parts on these assessments
Esporta Word


© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
Contatti