Servizi per la didattica
PORTALE DELLA DIDATTICA

Principles of deep learning

01UMEKG

A.A. 2019/20

Course Language

Inglese

Course degree

Doctorate Research in Fisica - Torino

Course structure
Teaching Hours
Lezioni 20
Teachers
Teacher Status SSD h.Les h.Ex h.Lab h.Tut Years teaching
Zecchina Riccardo Tutore esterno dottorato   10 0 0 0 1
Teaching assistant
Espandi

Context
SSD CFU Activities Area context
*** N/A ***    
2019/20
PERIOD: JANUARY Discuss the basic models for deep learning
PERIOD: JANUARY Discuss the basic models for deep learning
basic models, architectures, loss functions, CNN networks, learning algorithms, regularization techniques, theoretical results based on statistical physics and mathematics methods.
basic models, architectures, loss functions, CNN networks, learning algorithms, regularization techniques, theoretical results based on statistical physics and mathematics methods.
ModalitÓ di esame:
Exam:
...
Gli studenti e le studentesse con disabilitÓ o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'UnitÓ Special Needs, al fine di permettere al/la docente la declinazione pi¨ idonea in riferimento alla specifica tipologia di esame.
Exam:
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.
Esporta Word


© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
Contatti