Servizi per la didattica
PORTALE DELLA DIDATTICA

Operating systems for embedded systems

02NPSOV

A.A. 2018/19

Course Language

English

Course degree

Master of science-level of the Bologna process in Computer Engineering - Torino

Borrow

01NPSQW

Course structure
Teaching Hours
Lezioni 60
Esercitazioni in laboratorio 20
Teachers
Teacher Status SSD h.Les h.Ex h.Lab h.Tut Years teaching
Violante Massimo Professore Associato ING-INF/05 60 0 40 0 10
Teaching assistant
Espandi

Context
SSD CFU Activities Area context
ING-INF/05 8 B - Caratterizzanti Ingegneria informatica
2018/19
The course is taught in English. This course is part of the Master Degree in Computer Engineering, focused on Embedded Systems, and it is eligible course for the Master Degree in Mechatronic Engineering. The course aims at deepening the concepts acquired during the Operating Systems course, describing the peculiarities of embedded systems, of the dedicated development tools, and outlining the peculiarities of some operating systems for embedded systems that are particularly relevant (process scheduler, OSEK/VDX, AUTOSAR, Linux). The course will also deepen the concepts of real-time embedded systems, and the issues of communications with ad-hoc hardware components.
The course is taught in English. This course is part of the Master Degree in Computer Engineering, focused on Embedded Systems, and it is eligible course for the Master Degree in Mechatronic Engineering. The course aims at deepening the concepts acquired during the Operating Systems course, describing the peculiarities of embedded systems, of the dedicated development tools, and outlining the peculiarities of some operating systems for embedded systems that are particularly relevant (process scheduler, OSEK/VDX, AUTOSAR, Linux). The course will also deepen the concepts of real-time embedded systems, and the issues of communications with ad-hoc hardware components.
- Concept of embedded system. - Understanding of the development tools for embedded systems: cross-compiler, emulator, debug tools, profiling tools, virtualization tools. - Concept of real-time embedded systems. - Understanding of examples of operating systems for embedded systems. - Skill for the development of modules for the communication with ad-hoc hardware components.
- Concept of embedded system. - Understanding of the development tools for embedded systems: cross-compiler, emulator, debug tools, profiling tools, virtualization tools. - Concept of real-time embedded systems. - Understanding of examples of operating systems for embedded systems. - Skill for the development of modules for the communication with ad-hoc hardware components.
- Ability to develop programs in C language. - Knowledge of the architecture of computer-based systems: in particolar knowledge of processor architecture and memory organization. - Knowledge of the interrupt mechanisms, and basic knowledge of assembly programming.
- Ability to develop programs in C language. - Knowledge of the architecture of computer-based systems: in particolar knowledge of processor architecture and memory organization. - Knowledge of the interrupt mechanisms, and basic knowledge of assembly programming.
Introduction to Embedded Systems (0.5 CFU) - Classification with respect to desktop systems. - Memory technology device. Development tools (0.5 CFU) - Cross-compiler. - Emulator. - Debugger. - Profiler. - Virtual platforms. Operating Systems for Embedded Systems (4 CFU) - Real time and process scheduling. - Analysis of the architecture and services offered by operating systems for embedded: process scheduler, VxWorks, OSEK/VDX, AUTOSAR, Linux. - Anatomy of an operating system for embedded systems. Programming of an embedded OSEK/VDX system (1 CFU): - I/O management, and device drivers. - Use of an evaluation board. - Building a OSEK/VDX operating system for embedded systems: how to use development tools. - Design and development of device drivers for custom devices. Advanced tools for debugging and profiling of embedded systems (1 CFU) AUTOSAR concept, and AUTOSAR basic software architecture (1 CFU):
Introduction to Embedded Systems (0.5 CFU) - Classification with respect to desktop systems. - Memory technology device. Development tools (0.5 CFU) - Cross-compiler. - Emulator. - Debugger. - Profiler. - Virtual platforms. Operating Systems for Embedded Systems (4 CFU) - Real time and process scheduling. - Analysis of the architecture and services offered by operating systems for embedded: process scheduler, VxWorks, OSEK/VDX, AUTOSAR, Linux. - Anatomy of an operating system for embedded systems. Programming of an embedded OSEK/VDX system (1 CFU): - I/O management, and device drivers. - Use of an evaluation board. - Building a OSEK/VDX operating system for embedded systems: how to use development tools. - Design and development of device drivers for custom devices. Advanced tools for debugging and profiling of embedded systems (1 CFU) AUTOSAR concept, and AUTOSAR basic software architecture (1 CFU):
The course is organized in lectures and exercises in class, and practical exercises in laboratory. The topics are presented during formal lectures/exercises in class, and then are addressed from the practical point of view in the following week.
The course is organized in lectures and exercises in class, and practical exercises in laboratory. The topics are presented during formal lectures/exercises in class, and then are addressed from the practical point of view in the following week.
Notes provided by the teacher. Additional reading: A. Berger Embedded Systems Design: An Introduction to Processes, Tools and Techniques CMP Books, 2001, ISBN-10: 1-57-820073-3 Silbershatz A., Galvin. P., Gagne G. Operating Systems 8th Edition, Wiley, 2009, ISBN: 978-0-470-12872-5
Notes provided by the teacher. Additional reading: A. Berger Embedded Systems Design: An Introduction to Processes, Tools and Techniques CMP Books, 2001, ISBN-10: 1-57-820073-3 Silbershatz A., Galvin. P., Gagne G. Operating Systems 8th Edition, Wiley, 2009, ISBN: 978-0-470-12872-5
Modalità di esame: prova scritta; progetto di gruppo;
Exam Written exam lasting 60 minutes, closed books, composed of questions on the exam content, and numerical exercises to apply the theory presented in class. The maximum score for this part is 33. Assignment Students will be asked to deliver a group assignment (2 persons per group) to be developed during the semester, describing the activities done in lab. The maximum score for this part is 33. The final grade is obtained using the following weights: 70% for the written exam, 30% for the assignment. In case the final grade is 33/30, 30L will be recorded.
Exam: written test; group project;
Exam Written exam lasting 60 minutes, closed books, composed of questions on the exam content, and numerical exercises to apply the theory presented in class. The maximum score for this part is 33. Assignment Students will be asked to deliver a group assignment (2 persons per group) to be developed during the semester, describing the activities done in lab. The maximum score for this part is 33. The final grade is obtained using the following weights: 70% for the written exam, 30% for the assignment. In case the final grade is 33/30, 30L will be recorded.


© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
m@il