Servizi per la didattica
PORTALE DELLA DIDATTICA

Matematica per l'Intelligenza Artificiale

02UTJMQ

A.A. 2022/23

Lingua dell'insegnamento

Italiano

Corsi di studio

Corso di Laurea in Matematica Per L'Ingegneria - Torino

Organizzazione dell'insegnamento
Didattica Ore
Lezioni 40
Esercitazioni in aula 20
Esercitazioni in laboratorio 20
Docenti
Docente Qualifica Settore h.Lez h.Es h.Lab h.Tut Anni incarico
Vaccarino Francesco Professore Associato MAT/03 20 15 0 0 3
Collaboratori
Espandi

Didattica
SSD CFU Attivita' formative Ambiti disciplinari
ING-INF/05
MAT/03
MAT/07
MAT/08
2
2
2
2
C - Affini o integrative
A - Di base
F - Altre attività (art. 10)
D - A scelta dello studente
Attività formative affini o integrative
Formazione matematica di base
Altre conoscenze utili per l'inserimento nel mondo del lavoro
A scelta dello studente
Valutazione CPD 2021/22
2022/23
L'obiettivo principale del corso è l'introduzione agli aspetti matematici di alcune aree dell’Intelligenza Artificiale.
The main objective of this course is to give an introduction to the mathematical aspects of certain areas of Artificial Intelligence.
- Comprensione e conoscenza delle tecniche presentate (conoscenza dettagliata della matematica sottostante; consapevolezza delle limitazioni delle tecniche presentate; coscienza dei problemi strutturali quali, ad esempio, la "curse of dimensionality"). - Capacità di applicazione pratica delle conoscenze acquisite (capacità di identificare il dominio di applicazione delle varie tecniche in rapporto alla natura dei dati; abilità nell'estrarre informazioni da dati reali e simulati attraverso l'applicazione delle tecniche apprese attraverso l'uso di software appositi o di codice autoprodotto).
- Knowledge and understanding of the presented techniques (detailed knowledge of the mathematics behind them; be acquainted of the limitations of the various techniques; awareness of the structural problem as e.r. the curse of dimensionality). - Practical application of the acquired knowledge (ability to identify the applicability domain of the various techniques with respect of the nature of data; ability to extract information from real and simulated data by applying the learned techniques via software application or development).
Si richiede la pregressa conoscenza dei contenuti dei corsi matematici standard della laurea triennale in Ingegneria. Inoltre, è richiesta una buona conoscenza della probabilità e della statistica: pdf, cdf, media, varianza-covarianza.
The students are assumed to know the topics covered by standard courses in mathematics given in the Bs.D. in Engineering. Furthermore: a good knowledge in basic probability and statistics is required: pdf, normal, expectation, mean, variance-covariance; gradient and conjugate gradient methods will be taken as granted.
- Che cosa è l'Intelligenza Artificiale (IA - AI)? Fondamenti di Intelligenza Artificiale. Cenni di storia della IA. Stato dell'arte. - Richiami di Algebra Lineare, Probabilità, Statistica e Ottimizzazione. - Cosa è lo "Statistical Learning"? Apprendimento supervisionato, non-supervisionato, con rinforzo, semi-supervisionato: esempi. Bilancio bias- varianza. Accuratezza vs interpretabilità. Validazione e cross-validation. - Spazi metrici, normati e topologici. Curse of dimensionality. Legge dei grandi numeri e la geometria alto dimensionale: palla unitaria, proiezioni stocastiche e il Lemma di Johnson-Lindenstrauss. - SVD e le sue applicazioni all'analisi a componenti principali e all'analisi discriminante di Fisher. - Classificazione con iperpiani. Il classificatore a margine massimale e la sua costruzione. Il caso non separabile e non lineare. Support Vector Machines, metodi di kernel, RHKS, Representers, Teorema di Mercer. - Basi di teoria dei giochi e loro applicazioni a ML/IA (Nash equilibrium vs SVM/PCA, Shapley Value vs XAI) - Cenni di sistemi dinamici e teoria ergodica per il ML: misure invarianti e convergenza debole; varietà stabili, centrali e instabili; dinamica simbolica e isomorfismi fra sistemi dinamici e processi stocastici; Entropie e misure di informazione, macchina universale di Turing; Applicazioni al Machine Learning - Algoritmi multi-agente per problemi di ottimizzazione. Riepilogo dell'ottimizzazione di funzioni e dell'algoritmo di discesa (deterministica e stocastica) del gradiente. Metodi particellari, Particle Swarm Optimisation (PSO), Consensus-Based Optimisation (CBO). Analisi degli algoritmi particellari mediante metodi della meccanica statistica.
- What Is AI? The Foundations of Artificial Intelligence; The History of Artificial Intelligence; The State of the Art. - Revision of Linear Algebra, Probability, Statistics and Optimization. - What Is Statistical Learning? Supervised, Unsupervised, Reinforcement and Semi-supervised Learning: examples. The Trade-Off Between Prediction Accuracy and Model Interpretability. Assessing Model Accuracy. Measuring the Quality of Fit. Validation and Cross-Validation. The Bias-Variance Trade-Off. - Metric and topological spaces. Curse of dimensionality; The Law of Large Numbers; the Geometry of High Dimensions: properties of the Unit Ball; Random Projection and Johnson-Lindenstrauss Lemma. - SVD and its application to Principal Components Analysis and Fisher Discriminant Analysis. - Classification Using a Separating Hyperplane. The Maximal Margin Classifier. Construction of the Maximal Margin Classifier. The Non-separable Case. Support Vector Classifiers. Support Vector Machines. Kernel Methods, representer and Mercer’s theorems. - Basics of game theory; Multi-agent systems; Adversarial Learning; Reinforcement Learning: Q-learning, Nash equilibria.
Lezioni, esercitazioni e laboratori. Ci saranno 40 ore di lezione, 20 di esercitazioni e 20 di laboratorio
Lessons, exercise classes and laboratory sessions will be given. There will be three hours of lesson per week plus one hour and half of exercises / laboratories.
RUSSELL, Stuart J.; NORVIG, Peter. Intelligenza artificiale. Un approccio moderno. Pearson Italia Spa, 2005. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). New York: Springer. Data Science and Machine Learning: Mathematical and Statistical Methods Dirk P. Kroese, Zdravko I. Botev, Thomas Taimre, Radislav Vaisman CRC Press, 2019 - 510 pagine Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning. Cambridge University Press, 2020. Roberto Livi, Lamberto Rondoni, Aspetti elementari della complessità, CLUT
Stuart J. Russell, Stuart Jonathan Russell, Peter Norvig, Ernest Davis Prentice Hall, 2010 An Introduction to Statistical Learning with Applications in R JAMES GARETH; WITTEN DANIELA; HASTIE TREVOR; TIBSHIRANI ROBERT Data Science and Machine Learning: Mathematical and Statistical Methods Dirk P. Kroese, Zdravko I. Botev, Thomas Taimre, Radislav Vaisman CRC Press, 2019 - 510 pagine
Modalità di esame: Prova orale obbligatoria; Elaborato scritto individuale; Elaborato scritto prodotto in gruppo;
Exam: Compulsory oral exam; Individual essay; Group essay;
L'obiettivo dell'esame è l'accertamento della conoscenza dei contenuti teorici del corso e della capacità di declinarli nell'analisi dei dati. L'esame consiste in due parti: dapprima si dovrà realizzare una relazione, detta informalmente "tesina", anche in gruppi di massimo tre persone, sull'analisi di un dataset messo a disposizione dai docenti durante il corso, ed eseguita usando i metodi appresi a lezione. La tesina sarà presentata in una prova orale di circa 15 minuti durante la quale saranno anche poste domande sui contenuti di tipo teorico presentati nel corso. Il voto finale sarà deciso a valle della prova orale tenendo in considerazione: la qualità della tesina, della sua esposizione, e il livello di comprensione delle tematiche teorico-modellistiche emerso dal colloquio.
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Exam: Compulsory oral exam; Individual essay; Group essay;
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.
Esporta Word


© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
Contatti