PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

Elenco notifiche



Automotive control systems

03MIQYG, 03MIQOV, 03MIQQW, 03MIQYP

A.A. 2026/27

Course Language

Inglese

Degree programme(s)

Master of science-level of the Bologna process in Ingegneria Informatica (Computer Engineering) - Torino
Master of science-level of the Bologna process in Mechatronic Engineering (Ingegneria Meccatronica) - Torino
Master of science-level of the Bologna process in Mechatronic Engineering (Ingegneria Meccatronica) - Torino

Course structure
Teaching Hours
Lecturers
Teacher Status SSD h.Les h.Ex h.Lab h.Tut Years teaching
Co-lectures
Espandi

Context
SSD CFU Activities Area context
ING-INF/04 6 C - Affini o integrative Attivitą formative affini o integrative
2024/25
The course aim is to provide an overview on the main automotive control problems and related solutions, dealing with chassis, engine and driveline subsystems. Some of the vehicle control systems, selected from the most common and usually present on commercial cars are deepened.
- Learning of the vehicle subsystems: chassis, engine, driveline - Learning of detailed and simplified vehicle modelling for each subsystem - Learning of vehicle control aspects and objectives for each subsystem and their interactions - Learning of possible solutions to each control problem - Ability to adapt vehicle model complexity to simulation, estimation, design aims - Ability to formulate vehicle control objectives - Ability to tune control systems and to evaluate the obtained performances - Ability to tune and evaluate a control system by means of the numerical simulation
The student must know the automatic control fundamental concepts and methods: the notion of dynamic system, its mathematical representation, its properties analysis, the notion of performance and feedback, the regulator design main techniques, such as the state or output feedback, both in the time and frequency domain. Digital control techniques, such as sampling, reconstruction and digital filter realization, are useful, together with robustness notion and its related analysis and design techniques. Basics on mechanical and thermodynamics systems and their mathematical description are as well useful. The student must be able to use the MATLAB/SIMULINK software environment.
Course presentation and overview on automotive control problems (2 hours). Chassis control problems: - Longitudinal dynamic during braking and acceleration: ABS and TC (7 hours). - Yaw dynamic in steering manoeuvres: ESP (7 hours). Engine control problems: - Thermodynamic phenomena (4 hours). - Combustion engines principles (4 hours). - Air fuel ratio control (6 hours). - Idle speed control (4 hours). - Knock control (5 hours). - Cylinder balancing (2 hours). Driveline control problems: - Gear shifting (4 hours). If possible, presentation of automotive companies are scheduled during the course.
Room lectures on the course topics (45 hours). Laboratory lectures: deepening of the chassis and driveline subjects by means of numerical exercises. The lectures take place in a computer laboratory using CARSIM, a professional numerical simulator of the vehicle dynamics, together with the software tool MATLAB/SIMULINK (15 hours). If possible, visit to automotive companies are scheduled during the course.
U. Kiencke, L. Nielsen, Automotive Control Systems: For Engine, Driveline and Vehicle, Springer-Verlag, Second Edition, 2005. A.G. Ulsoy, H. Peng and M. Ēakmakcż, Automotive Control Systems, Cambridge University Press, 2012 Additional material, such as notes, lecture slides and laboratory exercise files, is made available to students.
Modalitą di esame:
Exam:
...
Gli studenti e le studentesse con disabilitą o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unitą Special Needs, al fine di permettere al/la docente la declinazione pił idonea in riferimento alla specifica tipologia di esame.
Exam:
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.
Esporta Word