Servizi per la didattica
PORTALE DELLA DIDATTICA

Meccanica del volo spaziale

03NZMMT

A.A. 2021/22

Lingua dell'insegnamento

Italiano

Corsi di studio

Corso di Laurea Magistrale in Ingegneria Aerospaziale - Torino

Organizzazione dell'insegnamento
Didattica Ore
Docenti
Docente Qualifica Settore h.Lez h.Es h.Lab h.Tut Anni incarico
Collaboratori
Espandi

Didattica
SSD CFU Attivita' formative Ambiti disciplinari
ING-IND/03 6 D - A scelta dello studente A scelta dello studente
2020/21
Il corso intende fornire agli allievi gli strumenti per comprendere i principali problemi della meccanica del volo spaziale. Ampia parte del corso è dedicata ai fondamenti dell'astrodinamica, con cenni alla meccanica celeste e con particolare attenzione al problema dei due corpi. Verranno inoltre fornite le nozioni di base per il progetto di missioni interplanetarie, con cenni a tutte le fasi della missione come lancio, messa in orbita, cambio di traiettoria, rientro a terra o cattura. Infine verranno trattati i problemi fondamentali legati alla dinamica del volo del satellite inteso come corpo rigido. Verranno svolte esercitazioni pratiche sul calcolo dei parametri orbitali, sulla stima delle perturbazioni orbitali, sul progetto di manovre per la modifica dei parametri orbitali, sul progetto delle manovre lunari e interplanetarie.
Il corso intende fornire agli allievi gli strumenti per comprendere i principali problemi della meccanica del volo spaziale. Ampia parte del corso è dedicata ai fondamenti dell'astrodinamica, con cenni alla meccanica celeste e con particolare attenzione al problema dei due corpi. Verranno inoltre fornite le nozioni di base per il progetto di missioni interplanetarie, con cenni a tutte le fasi della missione come lancio, messa in orbita, cambio di traiettoria, rientro a terra o cattura. Infine verranno trattati i problemi fondamentali legati alla dinamica del volo del satellite inteso come corpo rigido. Verranno svolte esercitazioni pratiche sul calcolo dei parametri orbitali, sulla stima delle perturbazioni orbitali, sul progetto di manovre per la modifica dei parametri orbitali, sul progetto delle manovre lunari e interplanetarie.
Ci si aspetta che gli studenti acquisiscano competenze teoriche e pratiche sui problemi trattati con particolare attenzione ai risvolti ingegneristici della materia. Gli studenti dovrebbero inoltre acquisire la capacità di simulare missioni storiche utilizzando strumenti di progettazione normalmente utilizzati in ambiente industriale (Matlab, Simulink)
Ci si aspetta che gli studenti acquisiscano competenze teoriche e pratiche sui problemi trattati con particolare attenzione ai risvolti ingegneristici della materia. Gli studenti dovrebbero inoltre acquisire la capacità di simulare missioni storiche utilizzando strumenti di progettazione normalmente utilizzati in ambiente industriale (Matlab, Simulink)
E’ richiesto che gli studenti abbiano dimestichezza al calcolo matriciale, algebra lineare e calcolo differenziale e che abbiano inoltre nozioni di base di meccanica razionale.
E’ richiesto che gli studenti abbiano dimestichezza al calcolo matriciale, algebra lineare e calcolo differenziale e che abbiano inoltre nozioni di base di meccanica razionale.
Elementi di meccanica celeste: • introduzione al sistema solare • leggi di Keplero, leggi di Newton, legge di gravitazione universale • cenno al problema degli n corpi, problema dei due corpi, equazioni del moto relativo • caratteristiche del campo gravitazionale: conservazione dell'energia meccanica e del momento della quantità di moto, velocità ed accelerazioni • equazione della traiettoria, equazione polare della sezione di conica, similarità tra l'equazione della traiettoria e l'equazione della conica: geometria delle coniche • legame tra energia e momento della quantità di moto e la geometria dell'orbita, problema tempo, velocità cosmiche. Sistemi di riferimento: • sistema eliocentrico • sistema geocentrico • parametri orbitali • sfera celeste: sistema di ascensione retta-declinazione • determinazione dei parametri orbitali a partire da r e v • sistema perifocale • cambio del sistema di riferimento • traccia dell'orbita a terra e cono di visibilità Satelliti artificiali: • orbite geostazionarie, eliosincrone e molnya • perturbazioni e correzioni orbitali • manovre obitali nel piano • manovre orbitali fuori dal piano Traiettorie lunari: • Il problema dei tre corpi ristretto, punti di librazione e superficie di Hill Traiettorie interplanetarie: • approssimazione patch-conics: fase eliocentrica, finestra di lancio, arrivo al pianeta target con cattura e flyby
Elementi di meccanica celeste: • introduzione al sistema solare • leggi di Keplero, leggi di Newton, legge di gravitazione universale • cenno al problema degli n corpi, problema dei due corpi, equazioni del moto relativo • caratteristiche del campo gravitazionale: conservazione dell'energia meccanica e del momento della quantità di moto, velocità ed accelerazioni • equazione della traiettoria, equazione polare della sezione di conica, similarità tra l'equazione della traiettoria e l'equazione della conica: geometria delle coniche • legame tra energia e momento della quantità di moto e la geometria dell'orbita, problema tempo, velocità cosmiche. Sistemi di riferimento: • sistema eliocentrico • sistema geocentrico • parametri orbitali • sfera celeste: sistema di ascensione retta-declinazione • determinazione dei parametri orbitali a partire da r e v • sistema perifocale • cambio del sistema di riferimento • traccia dell'orbita a terra e cono di visibilità Satelliti artificiali: • orbite geostazionarie, eliosincrone e molnya • perturbazioni e correzioni orbitali • manovre obitali nel piano • manovre orbitali fuori dal piano Traiettorie lunari: • Il problema dei tre corpi ristretto, punti di librazione e superficie di Hill Traiettorie interplanetarie: • approssimazione patch-conics: fase eliocentrica, finestra di lancio, arrivo al pianeta target con cattura e flyby
E’ sicuramente utile, se non indispensabile, seguire con continuità lezioni ed esercitazioni, nonostante siano disponibili autorevoli testi didattici di supporto.
E’ sicuramente utile, se non indispensabile, seguire con continuità lezioni ed esercitazioni, nonostante siano disponibili autorevoli testi didattici di supporto.
La materia, visto il suo aspetto pratico ed applicativo, si presta allo svolgimento di esercizi per ciascuno degli argomenti trattati. Le esercitazioni occuperanno quindi poco meno della metà del tempo di didattica frontale.
La materia, visto il suo aspetto pratico ed applicativo, si presta allo svolgimento di esercizi per ciascuno degli argomenti trattati. Le esercitazioni occuperanno quindi poco meno della metà del tempo di didattica frontale.
Testi di riferimento: • Roger R. Bate, Donald D. Mueller, Jerry E. White, Fundamental of Astrodynamics, Dover Publications, Inc. New York, 1971 • Marshall H. Kaplan, Modern Spacecraft Dynamics & Control, John Wiley & Sons, 1976 • J.W. Cornelisse H.F.R. Schoyer & K.F. Wakker, Rocket Propulsion and Spaceflight Dynamics B. Pitman Publishing Ltd
Testi di riferimento: • Roger R. Bate, Donald D. Mueller, Jerry E. White, Fundamental of Astrodynamics, Dover Publications, Inc. New York, 1971 • Marshall H. Kaplan, Modern Spacecraft Dynamics & Control, John Wiley & Sons, 1976 • J.W. Cornelisse H.F.R. Schoyer & K.F. Wakker, Rocket Propulsion and Spaceflight Dynamics B. Pitman Publishing Ltd
Modalità di esame: Prova orale obbligatoria;
La valutazione consiste in un tradizionale esame orale durante il quale verranno poste al candidato tre domande per le quali può essere richiesto anche lo svolgimento di brevi calcoli. La discussione della procedura di svolgimento delle esercitazioni contribuiscono alla valutazione finale. Le valutazioni sono espresse in trentesimi e l’esame è superato se la votazione riportata è di almeno 18/30. La valutazione viene fatta considerando a) la correttezza delle risposte, b) la pertinenza delle informazioni fornite, c) la capacità di rispondere in modo chiaro, preciso e razionale, motivando adeguatamente le argomentazioni prodotte. Essendo un corso specialistico di fine percorso, verranno valutate le competenze acquisite a livello ingegneristico nonché la capacità di esposizione secondo successione logica e proprietà di linguaggio.
Exam: Compulsory oral exam;
La valutazione consiste in un tradizionale esame orale durante il quale verranno poste al candidato tre domande per le quali può essere richiesto anche lo svolgimento di brevi calcoli. La discussione della procedura di svolgimento delle esercitazioni contribuiscono alla valutazione finale. Le valutazioni sono espresse in trentesimi e l’esame è superato se la votazione riportata è di almeno 18/30. La valutazione viene fatta considerando a) la correttezza delle risposte, b) la pertinenza delle informazioni fornite, c) la capacità di rispondere in modo chiaro, preciso e razionale, motivando adeguatamente le argomentazioni prodotte. Essendo un corso specialistico di fine percorso, verranno valutate le competenze acquisite a livello ingegneristico nonché la capacità di esposizione secondo successione logica e proprietà di linguaggio.
Modalità di esame: Prova orale obbligatoria;
La valutazione consiste in un tradizionale esame orale durante il quale verranno poste al candidato tre domande per le quali può essere richiesto anche lo svolgimento di brevi calcoli. La discussione della procedura di svolgimento delle esercitazioni contribuiscono alla valutazione finale. Le valutazioni sono espresse in trentesimi e l’esame è superato se la votazione riportata è di almeno 18/30. La valutazione viene fatta considerando a) la correttezza delle risposte, b) la pertinenza delle informazioni fornite, c) la capacità di rispondere in modo chiaro, preciso e razionale, motivando adeguatamente le argomentazioni prodotte. Essendo un corso specialistico di fine percorso, verranno valutate le competenze acquisite a livello ingegneristico nonché la capacità di esposizione secondo successione logica e proprietà di linguaggio.
Exam: Compulsory oral exam;
La valutazione consiste in un tradizionale esame orale durante il quale verranno poste al candidato tre domande per le quali può essere richiesto anche lo svolgimento di brevi calcoli. La discussione della procedura di svolgimento delle esercitazioni contribuiscono alla valutazione finale. Le valutazioni sono espresse in trentesimi e l’esame è superato se la votazione riportata è di almeno 18/30. La valutazione viene fatta considerando a) la correttezza delle risposte, b) la pertinenza delle informazioni fornite, c) la capacità di rispondere in modo chiaro, preciso e razionale, motivando adeguatamente le argomentazioni prodotte. Essendo un corso specialistico di fine percorso, verranno valutate le competenze acquisite a livello ingegneristico nonché la capacità di esposizione secondo successione logica e proprietà di linguaggio.


© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
Contatti