Servizi per la didattica
PORTALE DELLA DIDATTICA

Flussi turbolenti

05GDWMT

A.A. 2021/22

Lingua dell'insegnamento

Italiano

Corsi di studio

Corso di Laurea Magistrale in Ingegneria Aerospaziale - Torino

Organizzazione dell'insegnamento
Didattica Ore
Docenti
Docente Qualifica Settore h.Lez h.Es h.Lab h.Tut Anni incarico
Collaboratori
Espandi

Didattica
SSD CFU Attivita' formative Ambiti disciplinari
ING-IND/06 6 D - A scelta dello studente A scelta dello studente
2020/21
L'insegnamento ha la finalità di completare le conoscenze di base relative al moto turbolento di un fluido e della sua interazione con le superfici solide. In particolare si analizzano le proprietà fisiche della turbolenza nelle configurazioni tipiche dei flussi liberi e dei flussi confinati da parete di interesse industriale, in particolare aerospaziale e mezzi di trasporto su strada e strada ferrata, ma non esclusivamente. Infatti, vengono offerti anche informazioni sulla turbolenza nello strato limite terrestre, nell'atmosfera e negli oceani. Insieme al comportamento fisico si descrivono le principali metodologie di studio numeriche e sperimentali e si prepara lo studente all'utilizzo critico del software commerciale di simulazione numerica largamente utilizzato nell'ambito industriale. L'insegnamento è limitato al caso di moto di flussi incomprimibili.
L'insegnamento ha la finalità di completare le conoscenze di base relative al moto turbolento di un fluido e della sua interazione con le superfici solide. In particolare si analizzano le proprietà fisiche della turbolenza nelle configurazioni tipiche dei flussi liberi e dei flussi confinati da parete di interesse industriale, in particolare aerospaziale e mezzi di trasporto su strada e strada ferrata, ma non esclusivamente. Infatti, vengono offerti anche informazioni sulla turbolenza nello strato limite terrestre, nell'atmosfera e negli oceani. Insieme al comportamento fisico si descrivono le principali metodologie di studio numeriche e sperimentali e si prepara lo studente all'utilizzo critico del software commerciale di simulazione numerica largamente utilizzato nell'ambito industriale. L'insegnamento è limitato al caso di moto di flussi incomprimibili.
Acquisizione di conoscenze aggiornate sullo studio dei moti turbolenti, capacità di eseguire valutazioni di sforzo d'attrito nei flussi di parete e di interpretare le teorie ed i modelli implementati nei moderni codici di calcolo.
Acquisizione di conoscenze aggiornate sullo studio dei moti turbolenti, capacità di eseguire valutazioni di sforzo d'attrito nei flussi di parete e di interpretare le teorie ed i modelli implementati nei moderni codici di calcolo.
Fondamenti del calcolo differenziale ed integrale. Conoscenza dei principali argomenti trattati nei corsi del tipo di aerodinamica -- fluidodinamica -- meccanica dei fluidi.
Fondamenti del calcolo differenziale ed integrale. Conoscenza dei principali argomenti trattati nei corsi del tipo di aerodinamica -- fluidodinamica -- meccanica dei fluidi.
-- Introduzione: la natura fisica della turbolenza. Le equazioni del moto per flussi incompressibili (richiami). Il tensore degli sforzi di Reynolds. Equazioni dei momenti del secondo ordine: equazioni di bilancio degli sforzi di Reynolds e dell'energia cinetica delle fluttuazioni turbolente. -- Elementi di statistica per la descrizione dei moti turbolenti: media di insieme e media temporale, la funzione densità di probabilità, momenti centrali (varianza, skewness e flattness), correlazioni, funzione di correlazione. Simmetrie statistiche nei flussi turbolenti. Le scale nei moti turbolenti. L'analisi spettrale dei flussi turbolenti. La cascata di energia. Ipotesi di Komogorov (K 1941). -- Moti di parete: canale e strato limite. Strato limite laminare (richiami). Teoria della stabilità lineare. Equazione di Orr-Sommerfeld. Curve di stabilità neutra. La transizione negli strati limite bidimensionali. Le onde di Tollmien-Schlichting. Effetti del numero di Reynolds, della rugosità di parete, del livello di turbolenza del flusso esterno, del gradiente di pressione. Effetti di tridimensionalità, amplificazione di instabilità del moto trasversale, contaminazione di bordo d'attacco. Metodi empirici per la predizione della transizione. Struttura dello strato limite, sotto strato viscoso, buffer layer, regione logaritmica e wake region. Strutture coerenti, vortici quasi longitudinali e strisce di bassa ed alta velocità. Rigenerazione dell'energia turbolenta nella regione prossima a parete: ipotesi correnti. Equazioni mediate per lo strato limite turbolento: approssimazioni e metodi di chiusura. Equazione integrale di Von Karman. -- Cenni sulla turbolenza di griglia, sui getti, scie e mixing turbolenti. -- Metodi numerici per lo studio dei moti turbolenti: DNS (direct numerical simulation): limiti di applicabilita ai flussi di interesse industriale. LES (large eddy simulation): le equazioni filtrate, il modello di Smagorinsky, il modello dinamico. RANS (Reynolds averaged methods): ipotesi di Boussinesq, modello algebrico, one equation model, modello k-epsilon, Reynolds-stress transport equations model.
-- Introduzione: la natura fisica della turbolenza. Le equazioni del moto per flussi incompressibili (richiami). Il tensore degli sforzi di Reynolds. Equazioni dei momenti del secondo ordine: equazioni di bilancio degli sforzi di Reynolds e dell'energia cinetica delle fluttuazioni turbolente. -- Elementi di statistica per la descrizione dei moti turbolenti: media di insieme e media temporale, la funzione densità di probabilità, momenti centrali (varianza, skewness e flattness), correlazioni, funzione di correlazione. Simmetrie statistiche nei flussi turbolenti. Le scale nei moti turbolenti. L'analisi spettrale dei flussi turbolenti. La cascata di energia. Ipotesi di Komogorov (K 1941). -- Moti di parete: canale e strato limite. Strato limite laminare (richiami). Teoria della stabilità lineare. Equazione di Orr-Sommerfeld. Curve di stabilità neutra. La transizione negli strati limite bidimensionali. Le onde di Tollmien-Schlichting. Effetti del numero di Reynolds, della rugosità di parete, del livello di turbolenza del flusso esterno, del gradiente di pressione. Effetti di tridimensionalità, amplificazione di instabilità del moto trasversale, contaminazione di bordo d'attacco. Metodi empirici per la predizione della transizione. Struttura dello strato limite, sotto strato viscoso, buffer layer, regione logaritmica e wake region. Strutture coerenti, vortici quasi longitudinali e strisce di bassa ed alta velocità. Rigenerazione dell'energia turbolenta nella regione prossima a parete: ipotesi correnti. Equazioni mediate per lo strato limite turbolento: approssimazioni e metodi di chiusura. Equazione integrale di Von Karman. -- Cenni sulla turbolenza di griglia, sui getti, scie e mixing turbolenti. -- Metodi numerici per lo studio dei moti turbolenti: DNS (direct numerical simulation): limiti di applicabilita ai flussi di interesse industriale. LES (large eddy simulation): le equazioni filtrate, il modello di Smagorinsky, il modello dinamico. RANS (Reynolds averaged methods): ipotesi di Boussinesq, modello algebrico, one equation model, modello k-epsilon, Reynolds-stress transport equations model.
Sono previste esercitazioni concernenti i principali metodi di simulazione numerica presso il LABinf (HPC @ POLITO). Metodo RANS: ala 3D, software STAR CCM+. Metodi LES e DNS: canale, mixings e turbolenza isotropa. Cenni sul calcolo parallelo con esercitazione dedicata presso il CASPER (DAUIN) del Labinf. Sessioni di lavoro saranno dedicate alla visualizzazione dei campi tridimensionali per mezzo del software VisIt.
Sono previste esercitazioni concernenti i principali metodi di simulazione numerica presso il LABinf (HPC @ POLITO). Metodo RANS: ala 3D, software STAR CCM+. Metodi LES e DNS: canale, mixings e turbolenza isotropa. Cenni sul calcolo parallelo con esercitazione dedicata presso il CASPER (DAUIN) del Labinf. Sessioni di lavoro saranno dedicate alla visualizzazione dei campi tridimensionali per mezzo del software VisIt.
a) Testo di riferimento per il corso: Copia delle diapositive proiettate durante le lezioni fornite dal docente nel Portale della Didattica. b) Per approfondimenti ed ulteriore consultazione: -- Stephen B. Pope, Turbulent Flows, Cambridge University Press (2000) -- DJ Tritton, Physical Fluid Dynamics, Oxford University Press (1988). -- Jean Mathieu, Julian Scott, An Introduction to Turbulent Flow, Cambridge University Press (2000).
a) Testo di riferimento per il corso: Copia delle diapositive proiettate durante le lezioni fornite dal docente nel Portale della Didattica. b) Per approfondimenti ed ulteriore consultazione: -- Stephen B. Pope, Turbulent Flows, Cambridge University Press (2000) -- DJ Tritton, Physical Fluid Dynamics, Oxford University Press (1988). -- Jean Mathieu, Julian Scott, An Introduction to Turbulent Flow, Cambridge University Press (2000).
Modalità di esame: Prova scritta su carta con videosorveglianza dei docenti;
Tipo di prova: scritta, 10 domande aperte. - Durata della prova: 1 - 1.30, a richiesta di qualche studente più lento (in genere tutti finiscono entro circa 1 ora 15 min) - Uso materiale didattico: no - Valutazione massima: 30 e lode - Descrizione della prova orale: non si fa orale. Ma in itinere corso, in modo facoltativo, può essere chiesto ai singoli studenti di preparare brevi reports su argomenti di loro speciale interesse (reports preparati in gruppo non sono ammessi). Di queste attività si tiene conto nel determinare il voto finale.
Exam: Paper-based written test with video surveillance of the teaching staff;
Tipo di prova: scritta, 10 domande aperte. - Durata della prova: 1 - 1.30, a richiesta di qualche studente più lento (in genere tutti finiscono entro circa 1 ora 15 min) - Uso materiale didattico: no - Valutazione massima: 30 e lode - Descrizione della prova orale: non si fa orale. Ma in itinere corso, in modo facoltativo, può essere chiesto ai singoli studenti di preparare brevi reports su argomenti di loro speciale interesse (reports preparati in gruppo non sono ammessi). Di queste attività si tiene conto nel determinare il voto finale.
Modalità di esame: Prova scritta (in aula); Prova scritta su carta con videosorveglianza dei docenti;
Tipo di prova: scritta, 10 domande aperte. - Durata della prova: 1 - 1.30, a richiesta di qualche studente più lento (in genere tutti finiscono entro circa 1 ora 15 min) - Uso materiale didattico: no - Valutazione massima: 30 e lode - Descrizione della prova orale: non si fa orale. Ma in itinere corso, in modo facoltativo, può essere chiesto ai singoli studenti di preparare brevi reports su argomenti di loro speciale interesse (reports preparati in gruppo non sono ammessi). Di queste attività si tiene conto nel determinare il voto finale.
Exam: Written test; Paper-based written test with video surveillance of the teaching staff;
Tipo di prova: scritta, 10 domande aperte. - Durata della prova: 1 - 1.30, a richiesta di qualche studente più lento (in genere tutti finiscono entro circa 1 ora 15 min) - Uso materiale didattico: no - Valutazione massima: 30 e lode - Descrizione della prova orale: non si fa orale. Ma in itinere corso, in modo facoltativo, può essere chiesto ai singoli studenti di preparare brevi reports su argomenti di loro speciale interesse (reports preparati in gruppo non sono ammessi). Di queste attività si tiene conto nel determinare il voto finale.


© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
Contatti