Servizi per la didattica
PORTALE DELLA DIDATTICA

Fondamenti di meccanica strutturale

09IHRMN

A.A. 2019/20

Lingua dell'insegnamento

Italiano

Corsi di studio

Corso di Laurea in Ingegneria Meccanica - Torino

Organizzazione dell'insegnamento
Didattica Ore
Lezioni 53
Esercitazioni in aula 27
Docenti
Docente Qualifica Settore h.Lez h.Es h.Lab h.Tut Anni incarico
Delprete Cristiana - Corso 1 Professore Ordinario ING-IND/14 53 12 0 0 2
Firrone Christian Maria - Corso 3 Professore Associato ING-IND/14 53 27 0 0 2
Rosso Carlo - Corso 2 Professore Associato ING-IND/14 53 12 0 0 5
Collaboratori
Espandi

Didattica
SSD CFU Attivita' formative Ambiti disciplinari
ING-IND/14 8 B - Caratterizzanti Ingegneria meccanica
2019/20
L’insegnamento è la base di formazione in ambito strutturale dell’ingegneria meccanica e costituisce le fondamenta dello specifico percorso formativo che si svilupperà e completerà nel corso degli anni successivi al fine di abilitare lo studente all’esercizio della professione. L'insegnamento ha come obiettivo il fornire le conoscenze di base e le abilità necessarie fondamentali per eseguire il dimensionamento e la verifica strutturale di modelli di componenti/strutture soggetti a carichi statici e variabili nel tempo.
The course presents the basics of mechanical engineering and represents the starting level of a specific training that will be developed and completed during the following years with the aim to qualify the student to solve real structural design problems. The course aims to provide the basic knowledge and skills necessary to perform the structural design and verification of structures/components and mechanical systems subjected to static and fatigue loads.
I risultati attesi in seguito al superamento del corso sono: • Capacità di definire un equilibrio di forze e ricavare le reazioni vincolari in un modello semplificato di componente e/o struttura; • Capacità di disegnare e quantificare le caratteristiche di sollecitazione presenti su un modello semplificato di componente e/o struttura; • Capacità di determinare quale sia la sezione maggiormente sollecitata e su questa definire il punto in cui si manifesta lo stato tensionale più gravoso ai fini della resistenza; • Capacità di definire, in funzione del tipo di carico (statico o affaticante) e del tipo di cedimento del materiale (fragile o duttile), l’ipotesi di cedimento più appropriata e calcolare la tensione equivalente; • Capacità di valutare le proprietà del materiale e se necessario scegliere il materiale più idoneo all’applicazione; • Capacità di calcolare, in funzione delle richieste di verifica e/o progetto, l’appropriato coefficiente di sicurezza e/o la dimensione geometrica incognita e/o la durata del componente e/o struttura.
The expected skills after the attendance of the course are: • Ability to define a force equilibrium and to calculate the constraint reactions of a simplified model of a component and/or a structure; • Ability to draw and compute the internal force diagrams in a simplified model of a component and/or a structure; • Ability to determine the most critical cross section and to define on it the point where the most severe stress state occurs; • Ability to define, depending on load type (static or fatigue) and material type (brittle or ductile), the adequate failure criterion and to calculate the equivalent stress; • Ability to evaluate the material properties and, if necessary, to choose the most suitable material for the application; • Ability to calculate, depending on the verification and/or design requirements, the adequate safety factor and/or the unknown geometrical dimension and/or the component endurance.
Le conoscenze pregresse richieste per una proficua frequentazione del corso sono: • Conoscenza dei contenuti del corso di Matematica (studio di funzione, calcolo di derivate e integrali, calcolo matriciale, problema agli autovalori); • Conoscenza dei contenuti del corso di Fisica (concetti base di cinematica, statica e dinamica).
The required prerequisites for a useful attendance of the course are: • Concepts of Mathematics (study of functions, computation of derivatives and integrals, matrix algebra, eigenvalue problems); • Concepts of Physics (basic concepts of kinematics, statics and dynamics).
• Richiami e completamento delle nozioni fondamentali di statica (forze, momenti, risultanti, equivalenza di sistemi), carichi concentrati e distribuiti, vincoli fondamentali, grado di iperstaticità. Equazioni di equilibrio alla traslazione e alla rotazione nel piano e nello spazio. (1 CFU) • Caratteristiche di sollecitazione in elementi strutturali mono-dimensionali soggetti a carichi nel piano e nello spazio. Solido di de St Venant: comportamento estensionale, flessionale, torsionale e a taglio. Stato di tensione e di deformazione. (3,5 CFU) • Caratteristiche meccaniche statiche dei materiali di interesse ingegneristico, criteri di cedimento per materiali a comportamento fragile e duttile, coefficienti di sicurezza. (1 CFU) • Configurazione deformata di travi (equazione della linea elastica), soluzione di problemi iperstatici e instabilità elastica. (1 CFU) • Fatica meccanica monoassiale ad alto numero di cicli (HCF): parametri caratteristici, diagramma SNP, effetto della tensione media (diagrammi di Haigh, Goodman-Smith). Dal materiale al componente: effetto della finitura superficiale, del tipo di carico, delle dimensioni ed effetto d’intaglio. Durata del componente e coefficiente di sicurezza a fatica. Fatica con sollecitazioni di ampiezza variabile (regola del danneggiamento cumulativo di Palmgren-Miner). (1,5 CFU)
• Summary and completion of fundamentals of statics (forces, moments, resultants, equivalence of systems), concentrated and distributed loads, fundamental constraints, static determinacy. Equilibrium equations with respect to translation and rotation in plane and in space domain. (1CFU) • Internal force diagrams in one-dimensional structural elements subjected to plane and spatial loading conditions. de St Venant’s theory: tension/compression, bending, torsion and shear. Stress and strain state. (3,5 CFU) • Static mechanical characteristics of materials of engineering interest, failure criteria for materials with brittle and ductile behaviour, static safety factors. (1 CFU) • Deformed shape of bending beams (elastic line equation), overconstrained problem solution and elastic instability (buckling). (1 CFU) Uniaxial mechanical fatigue with high number of cycles (HCF): fundamental parameters, SN diagram, effect of the mean stress (Haigh, Goodman-Smith diagrams). From material to component: surface finishing effect, load type effect, dimension effect and notch effect. Component life and fatigue safety factor. Fatigue with varying amplitude stress (Palmgren-Miner cumulative damage rule). (1.5 CFU)
• Lezioni teoriche (47 ore); • Esercitazioni in aula a squadre sui vari argomenti trattati a livello teorico (33 ore).
• Theory lessons (47 hours); • Practice classes on subjects presented at theory classes (33 hours).
Testo di riferimento: • A. Somà, Fondamenti di meccanica strutturale, Ed. Levrotto & Bella, 2019. Possibili testi addizionali di approfondimento: • R.C. Juvinall, K.M. Marshek, Fondamenti della progettazione dei componenti delle macchine, Ed. ETS. • J. A. Collins, Failure of materials in mechanical design, Ed. J. Wiley. • M. Rossetto, Introduzione alla fatica dei materiali e dei componenti meccanici, Ed. Levrotto & Bella. • L. Goglio, Fondamenti di Meccanica Strutturale (shareware).
Reference textbook: • A. Somà, Fondamenti di meccanica strutturale, Ed. Levrotto & Bella, 2019. Possible additional deepening textbooks: • R.C. Juvinall, K.M. Marshek, Fondamenti della progettazione dei componenti delle macchine, Ed. ETS. • J. A. Collins, Failure of materials in mechanical design, Ed. J. Wiley. • M. Rossetto, Introduzione alla fatica dei materiali e dei componenti meccanici, Ed. Levrotto & Bella. • L. Goglio, Fondamenti di Meccanica Strutturale (shareware).
Modalità di esame: prova scritta; prova orale facoltativa;
L’esame ha lo scopo di verificare le competenze indicate nella Sezione “Risultati dell’apprendimento attesi”. Gli obiettivi che l'esame intende accertare sono pertanto: la corretta scrittura degli equilibri di forze e la corretta valutazione delle reazioni vincolari, la corretta valutazione e rappresentazione grafica delle caratteristiche di sollecitazione, la corretta determinazione della sezione maggiormente sollecitata e l’identificazione del punto con lo stato tensionale più gravoso, la scelta dell’ipotesi di cedimento più appropriata per il calcolo della tensione equivalente, la corretta valutazione del coefficiente di sicurezza e/o della dimensione geometrica e/o della durata del modello di componente/struttura in esame. L’esame è costituito da un compito scritto e un orale facoltativo. Il compito scritto, della durata di 3 ore, consiste nella soluzione di 2-3 esercizi e nella risposta a di 2-3 domande di teoria a risposta aperta, relative al contenuto dell’intero insegnamento. Per accedere al compito scritto è necessario: 1. prenotarsi con la consueta procedura telematica; 2. presentarsi nell’aula che verrà indicata sugli avvisi della pagina del corso; 3. portare con sé documento di identificazione, calcolatrice scientifica non programmabile ed esclusivamente cancelleria minima (penna blu o nera, matita, gomma, righello, squadrette e compasso). Il materiale cartaceo per lo svolgimento dello scritto sarà messo a disposizione dai docenti. Durante lo scritto non è consentito consultare appunti o altro materiale. Anche la chiarezza espositiva e le rappresentazioni grafiche costituiscono oggetto di valutazione. La visione del compito scritto corretto dai docenti costituisce parte integrante dell’esame e avviene esclusivamente, salvo motivi di assenza certificati, nella giornata in cui è fissato da calendario istituzionale l’orale. La prova orale facoltativa, si svolge al termine della visione degli scritti. Per accedere alla prova orale non è necessario prenotarsi con la procedura telematica. L’orale è facoltativo e può essere affrontato soltanto dagli studenti che abbiano ottenuto un punteggio dello scritto non inferiore a 18. La facoltà di non sostenere l’orale comporta: • per coloro che abbiano conseguito nel compito scritto un punteggio compreso tra 18 e 26, la registrazione del punteggio ottenuto come voto finale in trentesimi; • per coloro che abbiano conseguito nello scritto un punteggio superiore a 26, la registrazione di un voto finale pari a 26/30. L’orale deve essere affrontato nell’ambito dello stesso appello dello scritto. L’orale consiste nella risposta ad un minimo di 2 domande sul contenuto dell’intero insegnamento. L’assenza dello studente alla data disponibile per l’orale viene considerata come scelta di non sostenere l’orale e quindi come implicita accettazione del voto ottenuto nello scritto, secondo le regole sopra esposte. Il voto finale dell’esame è calcolato come media aritmetica delle valutazioni conseguite nello scritto e nell’orale.
Exam: written test; optional oral exam;
The exam has the aim of verifying the competences of the Section " Expected Learning Outcomes". The objectives that the exam intends to verify are therefore: the correct definition of the force equilibrium and the correct calculation of the constraint reactions, the correct calculation and graphical representation of the internal forces, the correct determination of the most critical cross section and the identification of the point where the most severe stress state occurs, the correct selection of the more adequate failure criterion for the calculation of the equivalent stress, the correct calculation of the safety factor and/or of the unknown geometrical dimension and/or of the endurance of the component/structure model under investigation. The exam is constituted by a written part and an optional oral part. The written part of the exam, whose duration is equal to 3 hours, consists in the solution of 2-3 numerical exercises and in the open-answer of 2-3 theoretical questions concerning all the subjects presented during the course. To attend the written part of the exam, it is necessary to: 1. Register with the usual online procedure; 2. Show up in front of the classroom that will be communicated in the web-page portal of the course (‘Avvisi’); 3. Show a valid ID card (student badge or identity card) for identification purposes and bring the following tools: scientific calculator, minimum stationery material (blue or black pen, pencil, rubber, ruler, set of square and compass). Sheets of paper will be provided by the teachers. During the written part of the exam, notes, textbooks and every other didactical stuff cannot be used. Exposition clarity and clear graphic representations constitute additional subjects for the evaluation. Students will check their own paperwork after teachers grading. This check is part of the exam session and it is taken exclusively within the date defined for the oral exam; exceptions may occur only for certified reasons. The oral part of the exam is optional for students who have obtained a minimum score of 18 in the written part. In order to take the oral part it is not necessary to register by means of the on-line procedure. If the oral exam is not attended: • for students having reached a score ranging between 18 and 26 in the written part, the final score of the exam will correspond to the score of the written exam; • for students having reached a score larger than 26 in the written part, the final score of the exam will be limited to 26/30. The oral part of the exam must be taken during the same call of the written part. The oral exam consists in at least 2 questions about the contents of the whole course. The absence of the student to the official date of the oral part will be considered as choice to not take part to the oral part and therefore as implicit acceptance of the score obtained in the written part, according to the above exposed rules. The final score of the exam is defined as the average of the two scores reached in the written and in the oral parts.


© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
m@il