Servizi per la didattica
PORTALE DELLA DIDATTICA

Fisica II

20AXPMK, 20AXPLX, 20AXPMQ

A.A. 2019/20

Lingua dell'insegnamento

Italiano

Corsi di studio

Corso di Laurea in Ingegneria Energetica - Torino
Corso di Laurea in Ingegneria Elettrica - Torino
Corso di Laurea in Matematica Per L'Ingegneria - Torino

Organizzazione dell'insegnamento
Didattica Ore
Lezioni 45
Esercitazioni in aula 15
Docenti
Docente Qualifica Settore h.Lez h.Es h.Lab h.Tut Anni incarico
Daghero Dario - Corso 1 Professore Associato FIS/01 45 15 0 0 1
Ricciardi Carlo - Corso 2 Professore Associato FIS/03 45 15 0 0 4
Collaboratori
Espandi

Didattica
SSD CFU Attivita' formative Ambiti disciplinari
FIS/01
FIS/03
3
3
A - Di base
A - Di base
Fisica e chimica
Fisica e chimica
2019/20
Il corso si propone di - fornire allo studente le conoscenze di base per la comprensione e l'interpretazione dei fenomeni elettromagnetici, della propagazione delle onde elettromagnetiche e dell’ottica; - illustrare le possibili applicazioni dei concetti acquisiti a problemi fisici e tecnologici reali.
The aim of the course is: - to introduce the main physical principles related to the classical electromagnetism including the propagation of electromagnetic waves and optics. - to describe the possible applications of the theoretical concepts to practical physical and technological problems.
Acquisizione della conoscenza dei principi base dell'elettromagnetismo, delle onde elettromagnetiche e dell'ottica ondulatoria. Capacità di comprensione delle principali applicazioni ingegneristiche e tecnologiche connesse con i fenomeni elettromagnetici. Capacità di applicare i principi fisici trattati in problemi di elettromagnetismo e propagazione delle onde elettromagnetiche.
Acquisition of the basic principles related to electromagnetism, electromagnetic waves and wave optics. Ability to understand the applications of electromagnetic phenomena in various branches of engineering and technology. Ability to apply the physical principles described during the lectures to solve problems in the field of electromagnetism and waves.
La comprensione degli argomenti del corso presuppone familiarità con gli strumenti matematici trattati nei corsi di Analisi matematica I e II e di Geometria, soprattutto con il calcolo integrale e differenziale delle funzioni di una o più variabili e l’algebra e il calcolo vettoriale. Strumenti e concetti appresi nel corso di Fisica I sono un prerequisito importante. In particolare, l’Elettrostatica nel vuoto, parzialmente sviluppata nel suddetto corso, è indispensabile per la comprensione degli argomenti trattati nella Fisica II. Di tale parte vengono pertanto presentati solo brevi richiami all’inizio del corso.
A good knowledge and mastery of the mathematical instruments learnt in the courses of Mathematical Analysis I and II and of Geometry are required, Electrostatics in vacuum is partly treated in the Physics I course and must be known at the beginning of the Physics II course. This knowledge is fundamental for the comprehension of all the subjects that will be studied.
Elettrostatica e corrente elettrica (18 ore) Richiami su: legge di Coulomb, campo elettrico, potenziale elettrico, moto di una carica in un campo elettrico uniforme. Distribuzioni discrete e continue di carica. Il dipolo elettrico, forza e coppia su un dipolo elettrico in un campo elettrico uniforme. Legge di Gauss per il campo elettrico, applicazioni. Condensatori e capacità. Densità di energia del campo elettrico. Dielettrici, polarizzazione della materia. Conduzione. Intensità e densità di corrente. Corrente continua. Resistenza. Legge di Ohm. Resistività e conducibilità. Potenza elettrica. Effetto Joule. Forza elettromotrice. Circuiti RC. Campi magnetici stazionari (12 ore) Campi magnetostatici e loro generazione. Forza agente su una carica in moto all’interno di un campo magnetico. Forza agente su un conduttore percorso da corrente immerso in un campo magnetico. Campo magnetico prodotto da una corrente: legge di Laplace ed applicazioni. Campo magnetico di una spira circolare percorsa da corrente. Dipolo magnetico. Momento meccanico ed energia potenziale di un dipolo magnetico in un campo magnetico applicato. Forza tra conduttori paralleli percorsi da corrente. Legge di Ampère e sue applicazioni. Campi magnetici nella materia: diamagnetismo, paramagnetismo, ferromagnetismo. Campi elettromagnetici dipendenti dal tempo (12 ore) Legge dell'induzione di Faraday-Henry-Lenz e sue applicazioni. Induttanza e autoinduzione. Circuiti RL. Circuiti accoppiati, mutua induzione. Energia immagazzinata nel campo magnetico di una corrente. Densità di energia del campo magnetico. Legge di Ampère-Maxwell. Principio di conservazione della carica elettrica. Equazioni di Maxwell in forma differenziale ed integrale. Onde elettromagnetiche (8 ore) Propagazione delle onde. Onde elettromagnetiche piane, loro deduzione dalle equazioni di Maxwell. Energia e quantità di moto delle onde elettromagnetiche piane, vettore di Poynting. Pressione di radiazione, polarizzazione delle onde elettromagnetiche, radiazione elettromagnetica di un dipolo elettrico oscillante. Spettro delle onde elettromagnetiche. Fenomeni di propagazione delle onde (10 ore) Riflessione e rifrazione delle onde, indice di rifrazione, riflessione totale. Interferenza: somma di onde, sorgenti coerenti e incoerenti, l’esperimento a doppia fenditura di Young. Fenomeni di diffrazione di Fraunhofer.
Stationary electric fields and electric current (18 hours) A summary of: Coulomb's law, electric field and potential, motion of a charge in a uniform electric field. Discrete and continuous charge distributions. The electric dipole, force and torque on an electric dipole in an electric field. Gauss' law for the electric field, applications. Capacity and capacitors. Energy density of the electric field. Dielectric, polarization of matter. Conductivity, Ohm's law, resistors, Joule's effect. The electromotive force. RC circuits. Stationary magnetic fields (12 hours) Magnetic field and magnetic interaction. Force on a charge moving in a magnetic field. Magnetic force on a current-carrying conductor. Sources of magnetic fields. Field of a straight current-carrying conductor: Laplace’s law, and its applications. Magnetic field of a circular current loop. Magnetic dipole. Magnetic torque and potential energy of a magnetic dipole in a magnetic field. Forces between parallel currents. Ampère’s law and its applications. Magnetic fields in matter: diamagnetic, paramagnetic and ferromagnetic materials. Time-dependent electromagnetic fields (12 hours) Faraday – Henry – Lenz law of electromagnetic induction and its applications. Inductance and self-inductance. RL circuits. Coupled circuits, mutual-induction. Energy density of the magnetic field. Principle of the electric charge conservation. Ampère-Maxwell law. Maxwell equations in differential and integral form. Electromagnetic waves (8 hours) Propagation of waves. Plane electromagnetic waves as solutions of Maxwell's equations. Energy and momentum of electromagnetic waves, Poynting vector. Radiation pressure. Polarization of light. Oscillating electric dipole. Electromagnetic spectrum. Waves propagation phenomena (10 hours) Laws of reflection and refraction, refraction index, total reflection. Interference: wave composition, coherent and incoherent sources, double slit Young's experiment. Fraunhofer's diffraction.
Il corso si articola in 45 ore di teoria e 15 ore di esercitazioni. Le esercitazioni in aula riguardano la risoluzione di problemi, con applicazioni di quanto trattato nelle lezioni immediatamente precedenti.
The course consists of 45 hours of theoretical lessons and 15 hours of class exercises. Problems and exercises related to the lessons' subjects will be solved in the tutorial classes.
- Mazzoldi, Nigro, Voci, Elementi di Fisica, vol. 2, Elettromagnetismo e Onde, Edizione II, Edises - Mazzoldi, Nigro, Voci, Fisica, vol. 2, Elettromagnetismo e Onde, Edises - Serway, Jewett, Fisica per Scienze ed Ingegneria, vol. 2, Edizione IV, Edises
- Mazzoldi, Nigro, Voci, Elementi di Fisica, vol. 2, Elettromagnetismo e Onde, Edizione II, Edises - Mazzoldi, Nigro, Voci, Fisica, vol. 2, Elettromagnetismo e Onde, Edises - Serway, Jewett, Fisica per Scienze ed Ingegneria, vol. 2, Edizione IV, Edises
Modalità di esame: prova scritta; prova orale facoltativa;
Lo scopo dell'esame è verificare la conoscenza degli argomenti trattati nel programma e la capacità di applicare i concetti teorici alla soluzione di problemi di elettromagnetismo e ottica ondulatoria. L'esame comprende uno scritto obbligatorio ed un orale facoltativo. Lo scritto consiste in problemi simbolici/numerici e domande di teoria su tutto il programma, al fine di accertare la capacità dello studente di rispondere a quesiti e svolgere calcoli, e di verificare la sua conoscenza dei fenomeni elettromagnetici e dell’ottica. Il tempo complessivamente assegnato per la prova è di 2h e per superare lo scritto occorre ottenere un punteggio complessivo pari a 18/30; il punteggio massimo conseguibile con lo scritto è pari a 30/30. Durante lo scritto non si possono portare in aula libri di alcun tipo o appunti del corso. Può essere consentito l’uso di una calcolatrice non programmabile. L'orale (facoltativo) riguarda tutti gli argomenti trattati nelle lezioni, al fine di accertare la comprensione delle leggi dell’elettromagnetismo e della propagazione delle onde elettromagnetiche. Il voto finale è una media della valutazione di scritto e orale.
Exam: written test; optional oral exam;
The goal of the exam is to test the knowledge of the candidate about the topics included in the program and the ability to apply the theoretical concepts in the solution of problems of electromagnetism and wave optics . The exam consists of a compulsory written part and an optional oral part. The written part includes problems (either symbolic or numeric) and questions about all the subjects of the course, to ascertain whether the students posses the ability to answer queries and carry out calculations, and to test his/her knowledge of the basic concepts of electromagnetism and optics. The total allotted time is 2 hrs. The written part is passed if the total score is at least 18/30; the maximum score is 30/30. During the written examination, students can only use a portable calculator as a supporting material. The (optional) oral exam is about all subjects treated in the lectures and is mainly aimed to test the understanding of the laws of electromagnetism and electromagnetic waves propagation. The final mark is an average of written/oral scores.


© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
m@il