en
Politecnico di Torino
Anno Accademico 2011/12
01NQCPF
Introduction to quantum mechanics, quantum statistics and field theory
Corso di Laurea Magistrale in Fisica Dei Sistemi Complessi (Physics Of Complex Systems) - Torino/Trieste/Parigi
Docente Qualifica Settore Lez Es Lab Tut Anni incarico
SSD CFU Attivita' formative Ambiti disciplinari
FIS/02 8 B - Caratterizzanti Discipline matematiche, fisiche e informatiche
Presentazione
Insegnamento obbligatorio per la Laurea Magistrale in Physics of Complex Systems, collocato al I pd del I anno. In questo insegnamento vengono introdotti i concetti fondamentali della meccanica quantistica e statistica, con alcuni cenni di teoria dei campi e alcune applicazioni specifiche a sistemi a bassa temperatura.
Risultati di apprendimento attesi
Lo studente deve acquisire una conoscenza approfondita degli elementi di base della meccanica quantistica (equazione di Schrödinger, osservabili, problemi classici risolubili esattamente).
Prerequisiti / Conoscenze pregresse
Nessuno.
Programma
  1. Classical black body radiation theory, photons and Planck energy distribution;
  2. Thomson atomic theory, Rutherford experiment, calculation of the classical atom life time, photoelectric and Compton effects;
  3. Waves and Particles: diffraction and interference of photons and electrons;
  4. Probability amplitudes and probability, superposition principle, probabilistic interpretation of the measurements, observables;
  5. Vector spaces of |BRA > and
  6. Eigenvectors and eigenvalues of operators; physical observables as hermitian operators; discrete and continous representations; the Dirac delta;
  7. Poisson parentheses and commutators; canonical quantization; space and time translation operators;
  8. Eigenvectors and eigenvalues of the momentum, indetermination principle;
  9. Schödinger equation, conserved quantities and stationary states;
  10. One dimensional problems, tunnel effect, probability current and density, current conservation;
  11. Harmonic oscillator in the Dirac representation, coherent states;
  12. Angular momentum as generator of space rotations; eigenvectors and eigenvalues of the angular momentum; commutation relation of scalars and vectors with the angular momentum operator; angular momentum in spherical coordinates;
  13. Combination of angular momenta in quantum mechanics;
  14. Schödinger equation in three dimensions; central potentials and the hydrogen atom, 3D harmonic oscillator;

  15. Spin and Pauli Hamiltonian; magnetic moment of a particle with spin; Zeeman and spin-orbit effect;
  16. Identical particles in quantum mechanics; fermions and bosons; construction of a wave function for a system of N identical particles; Slater determinant, elements of second quantization;
  17. Time independent perturbation theory;
  18. Time dependent perturbation theory, Fermi golden rule.
Testi richiesti o raccomandati: letture, dispense, altro materiale didattico
  1. P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, USA) or Principi della Meccanica Quantistica (Boringhieri);
  2. J.J. Sakurai, Modern Quantum Mechanics (Addison Wesley) or Meccanica Quantistica Moderna (Zanichelli);

  3. Landau-Lifshitz, Quantum Mechanics Non-Relativistic Theory, Third Edition: Volume 3 (Butterworth/Heineman) or Meccanica Quantistica Non-relativistica (Editori Riuniti);
  4. R. Feynmann, et al., Lectures on Physics (Vol. III), Addison-Wesley Pub.;
  5. A. Messiah, Mecanique Quantique, (Donod, Paris) or Quantum Mechanics, (North Holland, Amsterdam).
Criteri, regole e procedure per l'esame
L'esame consisterà in una prova orale sul programma del corso, o in alternativa nella discussione di un approfondimento svolto dallo studente su un argomento inerente il programma.
Statistiche superamento esami

Programma definitivo per l'A.A.2011/12
Indietro