Politecnico di Torino | |||||||||
Anno Accademico 2011/12 | |||||||||
06IHQMA Termodinamica applicata e trasmissione del calore |
|||||||||
Corso di Laurea in Ingegneria Biomedica - Torino |
|||||||||
|
|||||||||
|
|||||||||
Presentazione
L'insegnamento è diviso in due parti, in ognuna delle quali si trattano prima i metodi e le questioni di carattere generale e quindi le applicazioni.
Nella prima parte gli studenti sono guidati a comprendere come i cambiamenti nei corpi materiali siano legati e determinati dagli scambi di energia con altri corpi in forma di calore e lavoro. Si introducono le definizioni e i concetti fondamentali, le leggi fenomenologiche, i principi generali che governano questi fenomeni insieme con le loro rappresentazioni matematiche e i modelli comportamentali delle sostanze pure e sotto forma di miscele. Successivamente si descrivono le principali tecnologie per la conversione di calore in lavoro e viceversa nei motori e nelle macchine frigorifere insieme ai relativi metodi di calcolo. Nella seconda parte si sviluppa dal punto di vista fenomenologico e dei calcoli l'analisi dei meccanismi attraverso i quali si trasferisce l'energia nello spazio e nel tempo come la conduzione di calore, la convezione e la radiazione. Tra le applicazioni si studiano dispositivi di largo impiego nel campo ingegneristico. |
Risultati di apprendimento attesi
Al termine dell'insegnamento lo studente, per quanto attiene alle questioni generali, sarà in grado di comprendere e di esprimere in modo quantitativo come i flussi di energia siano insieme causa ed effetto di tutte le trasformazioni che si constatano nel modo fisico, e come si propaghino nello spazio e nel tempo in forma di calore per conduzione nei solidi, convezione nei liquidi e negli aeriformi e per onde elettromagnetiche nei mezzi trasparenti. Per quanto attiene le conoscenze tecnologiche e peculiari dell'ingegnere, egli saprà distinguere gli elementi fondamentali e calcolare le prestazioni fondamentali dei principali dispositivi per la produzione di energia meccanica e per la refrigerazione, analizzare a calcolare gli scambi termici per conduzione, convezione e irraggiamento attraverso vari dispositivi e procedere allo svolgimento dei calcoli di prima approssimazione per il loro dimensionamento.
|
Prerequisiti / Conoscenze pregresse
E' necessario conoscere elementi di analisi matematica (calcolo differenziale e integrale, metodi di soluzione dei tipi più semplici di equazioni differenziali ordinarie e alle derivate parziali), fisica (meccanica, dinamica, statica dei fluidi, elettromagnetismo, fisica della materia) e di chimica di base.
|
Programma
TERMODINAMICA APPLICATA (54 h)
Definizione di grandezze e concetti fondamentali: sistema e stato termodinamico, temperatura, calore, lavoro. Primo principio: enunciato generale, energia interna. Secondo principio: enunciato generale, macchine termiche, il teorema di Carnot, temperatura termodinamica, entropia, reversibilità e irreversibilità. Sistemi a deflusso: definizioni e rappresentazioni, equazioni fondamentali per i sistemi a deflusso, entalpia, calori specifici e bilanci di energia. L'equazione dell'energia cinetica e il teorema di Bernoulli. Proprietà di corpi omogenei, comportamento delle sostanze, relazioni termodinamiche generali e trasformazioni fondamentali, comprimibilità isoterma e adiabatica. Le sostanze pure: cambiamenti di stato, equazione di Clapeyron per i vapori, proprietà delle miscele di liquido e vapore. Equazioni di stato per gas ideali e reali; miscele ideali di gas ideali. Psicrometria: grandezze e trasformazioni psicrometriche di sostanze umide. Concetto di macchina motrice e operatrice, cenni sui cicli dei motori a gas e a vapore. Dispositivi e cicli inversi a semplice e multipla compressione di vapore. TRASMISSIONE DEL CALORE (27 h) Introduzione ai modi di trasmissione del calore. La conduzione: Equazione generale. La legge di Fourier. Fenomenologia e conduttività termica. Conduzione stazionaria monodimensionale. Conduzione non stazionaria in un sistema a resistenza interna trascurabile. La convezione forzata e libera: la legge di Newton nella convezione. Strati limite delle velocità e delle temperature nel deflusso interno ed esterno. I principali numeri adimensionali e le principali correlazioni. Scambiatori di calore: tipologie e grado di compattezza e metodi di dimensionamento. Irraggiamento: grandezze caratteristiche e interazione con le superfici. Il corpo nero e corpi grigi. Emissività. Scambio di energia per irraggiamento e fattori di forma. |
Organizzazione dell'insegnamento
Gli argomenti del corso vengono trattati attraverso delle lezioni che forniscono i fondamenti teorici della materia. Sono poi previste delle esercitazioni nelle quali si analizzano dei casi applicativi inerenti i principali argomenti della teoria, e per i quali si sviluppano le soluzioni numeriche.
|
Testi richiesti o raccomandati: letture, dispense, altro materiale didattico
Testi di riferimento per il corso
- Giaretto V., LEZIONI DI TERMODINAMICA APPLICATA E TRASMISSIONE DEL CALORE, Clut Ed., Torino. - Giaretto V., ESERCITAZIONI DI TERMODINAMICA APPLICATA, Clut Ed., Torino. Testi consigliati per approfondimenti - Calì M., Gregorio P., TERMODINAMICA, Esculapio Ed., Bologna Ed. in un volume unico - Cavallini A., Mattarolo L., TERMODINAMICA APPLICATA, Cleup Ed., Padova. - Cavallini A., Bonacina C., Mattarolo L., TRASMISSIONE DEL CALORE, Cleup Ed., Padova. - Guglielmini G., Pisoni C., INTRODUZIONE ALLA TRASMISSIONE DEL CALORE, Casa Editrice Ambrosiana. - Torchio M.F., TABELLE DI TERMODINAMICA APPLICATA E TRASMISSIONE DEL CALORE. Clut Ed., Torino. |
Criteri, regole e procedure per l'esame
L'esame è costituito da una prova scritta in cui si richiede di risolvere esercizi numerici e da un eventuale colloquio da svolgersi nel medesimo appello. Per accedere al colloquio è necessario il superamento di una soglia minima nella prova scritta. Le informazioni di dettaglio sulle modalità d’esame saranno fornite all’inizio del corso.
|
Statistiche superamento esami |
|