en
Politecnico di Torino
Anno Accademico 2012/13
01PDXOV, 01PDXQW
Modern design of control systems
Corso di Laurea Magistrale in Ingegneria Informatica (Computer Engineering) - Torino
Corso di Laurea Magistrale in Ingegneria Meccatronica (Mechatronic Engineering) - Torino
Docente Qualifica Settore Lez Es Lab Tut Anni incarico
SSD CFU Attivita' formative Ambiti disciplinari
ING-INF/04 6 B - Caratterizzanti Ingegneria dell'automazione
Presentazione
The course is taught in English.

Il corso intende fornire allo studente metodologie e strumenti per l'analisi ed il progetto di sistemi di controllo in presenza di incertezza.







Risultati di apprendimento attesi
- Conoscenza dei metodi di rappresentazione dell'incertezza nei sistemi dinamici
- Capacità a rappresentare l'incertezza di un sistema dinamico
- Conoscenza del concetto di robustezza
- Conoscenza degli strumenti per l'analisi ed il progetto di sistemi di controllo in presenza di incertezza di modello.
- Capacità di valutare la stabilità e le prestazioni robuste di un sistema di controllo
- Capacità di progettare sistemi di controllo robusto mediante gli approcci più diffusi con particolare riferimento alle tecniche H_infinito.
Prerequisiti / Conoscenze pregresse
È ritenuta fondamentale la conoscenza delle rappresentazioni dei sistemi dinamici lineari (equazioni di stato, funzione di trasferimento) nonché delle loro proprietà fondamentali (stabilità, raggiungibilità, osservabilità). Si ritengono inoltre necessari i concetti di base sui requisiti di un sistema di controllo e sulle strutture principali strutture. È inoltre richiesta la conoscenza dell'ambiente operativo MATLAB e del pacchetto Simulink.
Programma
Argomenti trattati nel corso e relativo peso in crediti.
- Formulazione del problema del controllo in termini di "guadagno" per sistemi a più ingressi e più uscite (norme). (0,5 cr)
- Rappresentazione di modelli di incertezza. Struttura generale del modello dell'impianto "aumentato" della parte di incertezza. (1cr)
- Stabilità interna. Stabilità robusta. Teorema del piccolo guadagno. (0,5 cr)
- Controllo in norma Hinf. (1,5 cr)
- Stabilità robusta in presenza di modelli di incertezza 'strutturata' (mu-analysis). Robustezza delle specifiche. (1 cr)
- Ottimizzazione lineare quadratica (LQR),Filtro di Kalman e controllo lineare quadratico e gaussiano (LQG). Tecniche LTR. (1,5 cr)
Organizzazione dell'insegnamento
Le esercitazioni riguardano sia esercizi relativi agli argomenti delle lezioni sia la progettazione di sistemi di controllo robusto di esempi applicativi. Alcune esercitazioni sono svolte in laboratorio informatico con l'utilizzo dell'ambiente operativo MATLAB (Control System Toolbox, Robust Control Toolbox, Simulink).
Testi richiesti o raccomandati: letture, dispense, altro materiale didattico
Verranno messe a disposizione le diapositive del corso preparate dal docente.

Testo di appoggio
J. B. Burl, Linear Optimal Control, Ed. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA 1998

Sarà inoltre reso disponibile dal docente ulteriore materiale ausiliario sottoforma di schede per le esercitazioni di laboratorio
Criteri, regole e procedure per l'esame
Alla fine del corso, allo studente verrà proposto un problema di progettazione per una specifica applicazione. Lo studente preparerà una relazione sulla soluzione da lui ottenuta. L'esame è costituito da una prova orale di discussione di quanto presentato.
Statistiche superamento esami

Programma definitivo per l'A.A.2012/13
Indietro