Politecnico di Torino | |||||||||
Anno Accademico 2017/18 | |||||||||
01SIUIW Advanced finite elements methods in continuum mechanics for complex geometries: from ALE formulations to immersed methods (didattica di eccellenza) |
|||||||||
Dottorato di ricerca in Ingegneria Aerospaziale - Torino |
|||||||||
|
|||||||||
|
|||||||||
Presentazione
PERIODO: MAGGIO - GIUGNO 2018
Professor: Guglielmo Scovazzi, Civil & Environmental Engineering Department, Duke University, USA Brief description: The course presents a detailed introduction to two of the most common methods for the resolution of continuum mechanics problems with complex geometries:1) the finite element method on arbitrary coordinates frames and 2) immersed boundary/geometries methods. |
Programma
1) Arbitrary Lagrangian/Eulerian formulations (ALE):
- Some fundamental results of vector calculus - Maps and kinematics for Lagrangian, Eulerian and arbitrary frames of reference - Leibnitz and Reynolds transport theorems in generalized coordinates - Balance laws - Rankine-Hugoniot conditions - Conservation laws in generalized coordinates - Variational formulations in generalized coordinates - The geometric conservation law and consequences 2) Immersed finite element methods: - Fundamental concepts, motivation, brief history - Characterization of immersed geometries, computational geometry - Brief description of immersed approaches with finite differences and finite volumes methods - Introduction and analysis of immersed FEM: stability, convergence - Condition number of the linear system and problems related to small cut cells - Applications and future perspectives References: [1] J. Donea & A. Huerta, "Finite Element Methods for Flow Problems", Wiley 2003. [2] G. Scovazzi & T.J.R. Hughes, "Lecture Notes on Continuum Mechanics on Arbitrary Moving Domains", Sandia National Laboratories Report 2007-6312P. [3] A. Main, G. Scovazzi, "The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems," in press in Journal of Computational Physics, 2018, https://doi.org/10.1016/j.jcp.2017.10.026 . [4] A. Main, G. Scovazzi, "The shifted boundary method for embedded domain computations. Part II: Advection-diffusion and Navier-Stokes equations," in press in Journal of Computational Physics, 2018. |
Orario delle lezioni |
Statistiche superamento esami |
|