Politecnico di Torino | |||||||||||||||||||||||||
Anno Accademico 2017/18 | |||||||||||||||||||||||||
06BQXOA, 06BQXPC Metodi matematici per l'ingegneria |
|||||||||||||||||||||||||
Corso di Laurea in Ingegneria Informatica - Torino Corso di Laurea in Ingegneria Del Cinema E Dei Mezzi Di Comunicazione - Torino |
|||||||||||||||||||||||||
|
|||||||||||||||||||||||||
|
|||||||||||||||||||||||||
Presentazione
L'insegnamento si propone di completare la formazione matematica di base, fornendo elementi della teoria delle funzioni di variabile complessa, della teoria delle distribuzioni, delle trasformate di Fourier e Laplace, ed infine della probabilità discreta e continua. Tali argomenti rivestono un ruolo centrale nelle applicazioni ingegneristiche; l'insegnamento sarà corredato da molti esempi che offriranno spunti per ulteriori approfondimenti.
|
Risultati di apprendimento attesi
Lo studente acquisisce una serie di concetti matematici di base e di strumenti per risolvere problemi di varia natura che spaziano dall'analisi dei segnali allo studio di fenomeni aleatori. La teoria delle distribuzioni fornisce un linguaggio generale e flessibile per trattare i segnali di qualunque natura essi siano (impulsivi, discontinui, ecc.): tale teoria è l'ambito naturale per lo studio delle trasformate di Fourier e di Laplace. Lo studente apprende le tecniche di base per il calcolo delle trasformate e acquisisce un bagaglio di trasformate fondamentali (delta, treni di delta, funzioni discontinue). La teoria delle funzioni di variabile complessa offre il linguaggio adeguato per lo studio della trasformata di Laplace e gli strumenti avanzati per l'analisi dei fenomeni singolari e per il calcolo degli integrali. Inoltre, lo studente apprende gli strumenti probabilistici necessari per trattare problemi dominati dall'incertezza, tipici dell'analisi di fenomeni non deterministici e del comportamento di variabili in essa coinvolte. Al termine dell'insegnamento lo studente sarà in grado di valutare la probabilità del verificarsi di eventi e di effettuare previsioni su fenomeni casuali nell'ambito dell'ingegneria elettronica e delle telecomunicazioni. La capacità di applicare le conoscenze acquisite sarà verificata mediante discussioni ed esercitazioni in aula.
|
Prerequisiti / Conoscenze pregresse
E' prerequisito necessario una buona dimestichezza con i concetti e gli strumenti matematici presentati nei corsi del I anno; nello specifico, del calcolo differenziale e integrale in una o più variabili.
|
Programma
1. (2,7 CFU) Funzioni di variabile complessa: derivabilità, condizioni di Cauchy-Riemann, integrali su curve. Teorema di Cauchy, formula integrale di Cauchy, sviluppabilità di funzioni analitiche in serie di Taylor e di Laurent. Teorema dei residui, calcolo dei residui e calcolo di integrali con il metodo dei residui.
2. (1,5 CFU) Teoria delle distribuzioni: definizione ed operazioni fondamentali (operazioni algebriche, traslazione, riscalamento, derivazione), distribuzioni delta, v.p. 1/t, treno di impulsi. Prodotto di convoluzione per funzioni e distribuzioni. 3. (1,8 CFU) Trasformata di Fourier e Laplace per funzioni e distribuzioni temperate: definizioni, proprietà, antitrasformate, formula di inversione. Trasformate notevoli. 4. (1 CFU) Elementi di calcolo combinatorio, misure di probabilità e relative proprietà elementari. Probabilità condizionate. 5. (1,5 CFU) Variabili casuali discrete e assolutamente continue, distribuzione di una variabile aleatoria. Alcuni esempi notevoli. 6. (1,5 CFU) Valori attesi, distribuzioni congiunte, indipendenza e correlazione, valori attesi condizionati. |
Organizzazione dell'insegnamento
Le esercitazioni seguiranno gli argomenti delle lezioni; in parte saranno svolte alla lavagna dal personale docente, in parte richiederanno la partecipazione attiva degli allievi.
|
Testi richiesti o raccomandati: letture, dispense, altro materiale didattico
Saranno utilizzate dispense ed esercizi disponibili in rete.
Per la parte di probabilità si consiglia il testo: Ross, S. 'Calcolo delle Probabilità', Ed. Apogeo, 2013 (o qualsiasi altra edizione). |
Criteri, regole e procedure per l'esame
L'esame finale è scritto. Una prova orale è opzionale su richiesta dello studente o a discrezione del docente.
La durata dell'esame scritto è di due ore. Durante la prova scritta gli studenti possono utilizzare solo una calcolatrice e dei formulari forniti dai docenti. La prova scritta è costituita da due parti: 1. dieci quiz a risposta multipla, di cui sei di analisi e quattro di calcolo delle probabilità; 2. due esercizi, uno di analisi e uno di calcolo delle probabilità, ciascuno composto da più domande. Per ogni quiz ci sono quattro possibili risposte, una sola delle quali è corretta. L'obiettivo dei quiz a risposta multipla è verificare l'apprendimento dei concetti di base di entrambi i moduli in cui è articolato il corso. Ogni quiz è valutato 1 punto se corretto e 0 punti altrimenti, così che il punteggio massimo della parte quiz è pari a 10 punti. Lo scopo degli esercizi della seconda parte è verificare la conoscenza e la capacità di trattare problemi di analisi complessa, distribuzioni, trasformate di Fourier e di Laplace, probabilità, variabili aleatorie e valori attesi. Il punteggio massimo dell'esercizio di analisi è 13 punti, quello dell'esercizio di calcolo delle probabilità è 9 punti. La prova scritta si considera superata se il suo risultato è superiore o uguale a 18/30, con almeno 4/30 acquisiti nella parte di probabilità ed almeno 6/30 acquisiti nella parte di analisi. Se il punteggio totale è non superiore a 30 esso rappresenta il voto finale espresso in trentesimi. Se è 31 o 32, il voto finale è 30 o 30 e lode rispettivamente. Solo gli studenti che hanno superato la prova scritta possono chiedere di sostenere anche la prova orale. Se richiesta, la prova orale concorre a determinare il voto finale dell'esame insieme con quella scritta. In particolare, essa può comportare sia l'innalzamento sia l'abbassamento del voto conseguito allo scritto in base alla prestazione dello studente. |
Orario delle lezioni |
Statistiche superamento esami |
|