en
Politecnico di Torino
Anno Accademico 2017/18
23ACINX
Analisi matematica II
Corso di Laurea in Ingegneria Elettronica - Torino
Docente Qualifica Settore Lez Es Lab Tut Anni incarico
Boieri Paolo       50 30 0 0 11
SSD CFU Attivita' formative Ambiti disciplinari
MAT/05 8 A - Di base Matematica, informatica e statistica
Presentazione
L’insegnamento di Analisi Matematica II completa la teoria delle funzioni di una variabile svolta nell’insegnamento di Analisi Matematica I, sviluppando i concetti di serie numerica, serie di potenze e serie di Fourier. Vengono inoltre fatti alcuni cenni alla trasformata di Laplace. Successivamente vengono presentati gli argomenti di base dell’analisi delle funzioni di più variabili: il calcolo differenziale per le funzioni di più variabili e le sue applicazioni, l’integrazione multipla, curvilinea e di superficie.
Risultati di apprendimento attesi
Comprensione degli argomenti trattati e relativa abilità di calcolo.
Capacità di riconoscere ed utilizzare adeguati strumenti matematici nelle discipline ingegneristiche.
Prerequisiti / Conoscenze pregresse
Gli argomenti trattati negli insegnamenti di Analisi Matematica I e di Algebra Lineare e Geometria. In particolare, limiti, successioni, calcolo differenziale e integrale per funzioni di una variabile, equazioni differenziali, algebra lineare, geometria delle curve.
Programma
Trasformata di Laplace.
Definizioni e criteri di convergenza per le serie numeriche. Serie di potenze. Serie di Fourier.
Richiami sui vettori. Cenni di topologia di R^n. Funzioni di più variabili, campi vettoriali. Limiti e continuità. Derivate parziali e direzionali, matrice Jacobiana. Differenziabilità, gradiente e piano tangente al grafico. Derivate seconde, matrice Hessiana. Polinomio di Taylor. Punti critici, massimi e minimi liberi.
Integrali doppi e tripli, baricentri. Lunghezza di una curva e area di una superficie cartesiana. Integrali curvilinei e di superficie (solo superfici cartesiane), circuitazione e flusso di un campo vettoriale. Campi conservativi. Teoremi di Green, della divergenza (Gauss) e del rotore (Stokes).
Organizzazione dell'insegnamento
Il corso consiste di 50 ore di lezione e 30 di esercitazione.
Le lezioni sono dedicate alla presentazione degli argomenti del programma del corso con definizioni, proprietà ed alcune dimostrazioni ritenute utili per una migliore comprensione degli argomenti e per fornire gli strumenti necessari per sviluppare capacità di ragionamento logico-deduttivo da parte dello studente. Ogni argomento teorico trattato nelle lezioni viene arricchito da esempi introduttivi. Le ore di esercitazione sono dedicate allo svolgimento di esercizi e di temi d’esame.
Testi richiesti o raccomandati: letture, dispense, altro materiale didattico
I testi consigliati saranno comunicati a lezione dal docente titolare dell’insegnamento tra quelli elencati:

- D. Bazzanella, P. Boieri, L. Caire, A. Tabacco, Serie di funzioni e trasformate, CLUT, 2001
- M. Bramanti, C.D. Pagani, S. Salsa, "Analisi matematica 2", Zanichelli,
2009.
- C. Canuto, A. Tabacco, "Analisi Matematica II", Springer, 2014 seconda edizione.
- S. Salsa, A. Squellati, "Esercizi di Analisi matematica 2", Zanichelli,
2011.

Ulteriore materiale sarà reso disponibile sul Portale della Didattica.
Criteri, regole e procedure per l'esame
L'esame consiste in una prova scritta di 7 esercizi a risposta chiusa e di un esercizio a risposta aperta sugli argomenti contenuti nel programma del corso. Gli esercizi comprendono anche quesiti di tipo teorico.
La durata della prova scritta è di 2 ore.
Durante lo svolgimento dell'esame non è consentito consultare quaderni, libri, appunti, fogli con esercizi, formulari, calcolatrici e ogni altro dispositivo elettronico.
Orario delle lezioni
Statistiche superamento esami

Programma definitivo per l'A.A.2017/18
Indietro