PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

Elenco notifiche



Calcolo

01NSDPW

A.A. 2019/20

Lingua dell'insegnamento

Italiano

Corsi di studio

Corso di Laurea in Pianificazione Territoriale, Urbanistica E Paesaggistico-Ambientale - Torino

Organizzazione dell'insegnamento
Didattica Ore
Lezioni 40
Esercitazioni in aula 20
Docenti
Docente Qualifica Settore h.Lez h.Es h.Lab h.Tut Anni incarico
De Angelis Elena Professore Associato MATH-04/A 40 0 0 0 2
Collaboratori
Espandi

Didattica
SSD CFU Attivita' formative Ambiti disciplinari
MAT/05 6 A - Di base Matematica, informatica e statistica
2019/20
L'insegnamento ha lo scopo principale di impartire in modo uniforme l'apprendimento dei principali strumenti matematici di base e del conseguente linguaggio ad allievi provenienti da differenti esperienze didattiche. In particolare il programma verterà su argomenti propedeutici e di supporto ai successivi corsi di statistica, di efficienza energetica e di valutazione e fattibilità economica. Per ognuno degli argomenti affrontati vengono presentate le nozioni di base ed i principali metodi di analisi dei problemi.
The main purpose of this course is to provide to all students, coming from different experiences, the knowledge of the main basic mathematical concepts. In details, the course will provide the main tools useful in subsequent courses, like the statistical course, or the energetic efficiency, town planning and financial evaluation of projects courses. All the mathematical concepts and tools are explained in a basic and simple way, with the aim to provide knowledge about the ability to solve mathematical problems.
- Conoscenza degli strumenti matematici essenziali per poter comprendere e affrontare problemi di calcolo differenziale, integrale e di algebra lineare - Conoscenza dei concetti e degli oggetti matematici utilizzati in altri ambiti disciplinari previsti nel percorso formativo. - Capacità di riconoscere gli strumenti matematici utilizzati in tali altri ambiti disciplinari e di risolvere semplici problemi ad essi relativi. - Capacità di comprendere eventuali modelli atti descrivere fenomeni di interesse nella pianificazione territoriale e nella sociologia urbana.
È richiesta la conoscenza dei concetti e degli strumenti matematici di base che sono comuni agli insegnamenti di tutte le scuole superiori: in particolare lo studente dovrà saper risolvere equazioni e disequazioni polinomiali di primo e secondo grado, equazioni e disequazioni fratte, sistemi di disequazioni, moltiplicazioni e divisioni tra polinomi; dovrà sapere i concetti basilari di goniometria e trigonometria, di logaritmi ed esponenziali; dovrà conoscere le principali proprietà delle potenze, del valore assoluto, degli enti geometrici euclidei nel piano.
Algebra lineare e geometria: Vettori e matrici, piani e rette, sistemi algebrici. Calcolo differenziale: Le funzioni e la loro rappresentazione grafica; funzioni elementari (funzioni razionali e irrazionali, funzioni esponenziali e logaritmiche, le funzioni trigonometriche e iperboliche); limiti di funzioni e loro calcolo nei casi immediati; continuità e teoremi relativi; calcolo delle derivate e relative applicazioni; regola di De L'Hôpital; teoremi fondamentali per la determinazione degli intervalli di monotonia e di concavità/convessità; comportamento agli estremi del dominio; grafico qualitativo di una funzione. Calcolo integrale: concetti preliminari e primi cenni di calcolo di integrali definiti e indefiniti. Funzioni in due variabili: rappresentazione, calcolo delle derivate parziali, classificazione dei punti critici, piano tangente.
L'insegnamento consiste di 40 ore di lezione e 20 di esercitazione. Le lezioni sono dedicate alla presentazione degli argomenti del programma dell'insegnamento con definizioni, proprietà ed alcune dimostrazioni ritenute utili per una migliore comprensione degli argomenti e per fornire gli strumenti necessari per sviluppare capacità di ragionamento logico-deduttivo da parte dello studente. Ogni argomento teorico trattato nelle lezioni viene arricchito da esempi introduttivi. Le ore di esercitazione sono invece dedicate esclusivamente allo svolgimento di esercizi e di temi d’esame, allo scopo principale di preparare lo studente per affrontare la prova di esame.
I testi, tra quelli elencati, saranno comunicati a lezione dal docente titolare dell’insegnamento. R.A. Adams, Calcolo Differenziale 1, Zanichelli, Bologna R.A. P. Marcellini, C. Sbordone, Calcolo, Liguori, Napoli R. Monaco, A. Repaci, Algebra Lineare, Celid, Torino S. Benenti, R. Monaco, Calcolo Differenziale per le Scienze Applicate, CELID Torino L. Rondoni, A. Zito, Istituzioni di Matematiche I, Clut, Torino E. Serra, Calcolo Integrale per le Scienze Applicate, CELID Torino
Modalità di esame: Prova scritta (in aula); Prova orale facoltativa;
Exam: Written test; Optional oral exam;
... L’esame è volto ad accertare la conoscenza degli argomenti elencati nel programma ufficiale dell'insegnamento e la capacità di applicare la teoria ed i relativi metodi di calcolo alla soluzione di esercizi. Le valutazioni sono espresse in trentesimi e l’esame è superato se la votazione riportata è di almeno 18/30. L'esame consiste di una prova scritta e di una prova orale facoltativa. La prova scritta consiste di 6 esercizi a risposta aperta sugli argomenti contenuti nel programma dell'insegnamento ed ha lo scopo di verificare il livello di conoscenza e di comprensione degli argomenti trattati. L’esame scritto si pone l’obiettivo di verificare le competenze di cui sopra (cfr Risultati dell’apprendimento attesi): l'esame, infatti, comprende esercizi di calcolo che richiedono la necessità di scegliere ed applicare lo strumento matematico più adeguato per la sua risoluzione, ma anche quesiti di tipo teorico, che richiedono la capacità, da parte dello studente, di costruire un concatenamento logico applicando in sequenza risultati teorici visti a lezione. La durata della prova scritta è di 2 ore. Ciascun esercizio vale 5 punti. Un punto supplementare è riservato alla chiarezza notazionale e al rigore espositivo e permette di ottenere la lode. Durante lo svolgimento dell'esame scritto non è consentito tenere e consultare quaderni, libri, fogli con esercizi, formulari, calcolatrici. I risultati dell’esame vengono comunicati sul portale della didattica, insieme alla data in cui gli studenti possono visionare il compito e chiedere chiarimenti. E' possibile sostenere una prova orale integrativa (su richiesta dello studente) che può fa variare il voto della prova scritta sia in positivo che in negativo. La prova orale integrativa va sostenuta nell'appello in cui si è sostenuto lo scritto ed è possibile solo se il voto conseguito nella prova scritta è di almeno 18/30.
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Esporta Word