PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

Elenco notifiche



Analisi matematica II

22ACIMK, 22ACILX

A.A. 2020/21

Lingua dell'insegnamento

Italiano

Corsi di studio

Corso di Laurea in Ingegneria Energetica - Torino
Corso di Laurea in Ingegneria Elettrica - Torino

Organizzazione dell'insegnamento
Didattica Ore
Lezioni 40
Esercitazioni in aula 20
Docenti
Docente Qualifica Settore h.Lez h.Es h.Lab h.Tut Anni incarico
Cancedda Andrea - Corso 2   Docente esterno e/o collaboratore   40 20 0 0 5
Serra Enrico - Corso 1 Professore Ordinario MATH-03/A 40 20 0 0 14
Collaboratori
Espandi

Didattica
SSD CFU Attivita' formative Ambiti disciplinari
MAT/05 6 A - Di base Matematica, informatica e statistica
2020/21
L’insegnamento di Analisi Matematica II presenta gli argomenti di base dell’Analisi Matematica delle funzioni di più variabili. I principali argomenti trattati sono il calcolo differenziale per le funzioni di più variabili e le sue applicazioni, l’integrazione multipla, curvilinea e di superficie. L'insegnamento presenta inoltre la teoria delle serie numeriche, di potenze e di Fourier.
The main goal of this course is to present the basic topics in the mathematical analysis of functions of several variables. In particular, differential calculus in several variables, the theory of multiple integration, line and surface integration. The course also presents the theory of numerical, power and Fourier series.
Comprensione degli argomenti trattati e abilità di calcolo nell’utilizzo dei relativi strumenti matematici introdotti. Capacità di riconoscere ed utilizzare adeguati strumenti matematici nelle discipline ingegneristiche. Capacità di costruire un percorso logico, utilizzando gli strumenti introdotti.
Gli argomenti trattati negli insegnamenti di Analisi Matematica I e di Algebra Lineare e Geometria. In particolare, limiti, successioni, calcolo differenziale e integrale per funzioni di una variabile, equazioni differenziali, algebra lineare, geometria delle curve.
Richiami sui vettori. Cenni di topologia di R^n. Funzioni di più variabili, campi vettoriali. Limiti e continuità. Derivate parziali e direzionali, matrice Jacobiana. Differenziabilità, gradiente e piano tangente al grafico. Derivate seconde, matrice Hessiana. Polinomio di Taylor. Punti critici, massimi e minimi liberi. Integrali doppi e tripli, baricentri. Lunghezza di una curva e area di una superficie cartesiana. Integrali curvilinei e di superficie (solo superfici cartesiane), circuitazione e flusso di un campo vettoriale. Campi conservativi. Teoremi di Green, della divergenza (Gauss) e del rotore (Stokes). Definizioni e criteri di convergenza per le serie numeriche. Serie di potenze. Serie di Fourier.
L'insegnamento consiste di 40 ore di lezione e 20 di esercitazione. Le lezioni sono dedicate alla presentazione degli argomenti del programma dell'insegnamento con definizioni, proprietà ed alcune dimostrazioni ritenute utili per una migliore comprensione degli argomenti e per fornire gli strumenti necessari per sviluppare capacità di ragionamento logico-deduttivo da parte dello studente. Ogni argomento teorico trattato nelle lezioni viene arricchito da esempi introduttivi. Le ore di esercitazione sono invece dedicate esclusivamente allo svolgimento di esercizi e di temi d’esame, allo scopo principale di preparare lo studente per affrontare la prova di esame.
I testi, tra quelli elencati, saranno comunicati a lezione dal docente titolare dell’insegnamento. Raccolte di esercizi, per tema, e testi di prove d’esame degli anni precedenti sono disponibili sulla pagina del Portale della Didattica dedicata all’insegnamento. - C. Bianca, L. Mazzi “Pillole di Analisi Matematica II”, CLUT, 2014 - S. Lancelotti, “Lezioni di Analisi Matematica II”, Celid, 2017. - S. Lancelotti, “Esercizi e quiz di Analisi Matematica II”, Celid, 2017. - V. Barutello, M. Conti, D. Ferrario, S. Terracini, G. Verzini, "Analisi Matematica", volume 2, Apogeo, 2013. - M. Bramanti, C. Pagani, S. Salsa. “Analisi matematica 2”, Zanichelli, 2009. - S. Salsa, A. Squellati. “Esercizi di Analisi matematica 2”, Zanichelli 2011. - C. Canuto, A. Tabacco, "Analisi Matematica II", Springer, 2014.
Modalità di esame: Prova orale facoltativa; Prova scritta tramite PC con l'utilizzo della piattaforma di ateneo;
L’esame è volto ad accertare la conoscenza degli argomenti elencati nel programma ufficiale del corso e la capacità di applicare la teoria ed i relativi metodi di calcolo alla soluzione di esercizi. Le valutazioni sono espresse in trentesimi e l’esame è superato se la votazione riportata è di almeno 18/30. L'esame consiste in una prova scritta e in una prova orale facoltativa. La prova scritta consiste di 10 esercizi a risposta chiusa sugli argomenti contenuti nel programma del corso ed ha lo scopo di verificare il livello di conoscenza e di comprensione degli argomenti trattati. L’esame si pone l’obiettivo di verificare le competenze di cui sopra (vedi Risultati dell’apprendimento attesi): esso, infatti, comprende esercizi di calcolo che necessitano di scegliere ed applicare lo strumento matematico più adeguato per la sua risoluzione, ma anche quesiti di tipo teorico, che richiedono la capacità, da parte dello studente, di costruire un concatenamento logico applicando in sequenza risultati teorici visti a lezione. La durata della prova scritta è di 100 minuti. Ciascun esercizio a risposta chiusa vale: 3 punti se giusto, 0 punti se senza risposta, -1 punto se sbagliato. Il voto finale è la somma dei punteggi ottenuti nei singoli esercizi aumentata di 2 punti. La lode si ottiene rispondendo in modo corretto a tutti i 10 esercizi. Durante lo svolgimento dell'esame scritto non è consentito tenere e consultare quaderni, libri, fogli con esercizi, formulari, calcolatrici. I risultati dell’esame vengono comunicati sul portale della didattica. E' possibile sostenere una prova orale integrativa (su richiesta dello studente) che può far variare il voto della prova scritta sia in positivo che in negativo. La prova orale integrativa va sostenuta nell'appello in cui si è sostenuto lo scritto ed è possibile solo se il voto conseguito nella prova scritta è di almeno 18/30.
Modalità di esame: Prova scritta (in aula); Prova orale facoltativa; Prova scritta tramite PC con l'utilizzo della piattaforma di ateneo;
In caso di esame in modalità mista (da remoto e in presenza), i criteri, le regole e le procedure sono le stesse di quelle per gli esami in remoto. L’esame è volto ad accertare la conoscenza degli argomenti elencati nel programma ufficiale del corso e la capacità di applicare la teoria ed i relativi metodi di calcolo alla soluzione di esercizi. Le valutazioni sono espresse in trentesimi e l’esame è superato se la votazione riportata è di almeno 18/30. L'esame consiste in una prova scritta e in una prova orale facoltativa. La prova scritta consiste di 10 esercizi a risposta chiusa sugli argomenti contenuti nel programma del corso ed ha lo scopo di verificare il livello di conoscenza e di comprensione degli argomenti trattati. L’esame si pone l’obiettivo di verificare le competenze di cui sopra (vedi Risultati dell’apprendimento attesi): esso, infatti, comprende esercizi di calcolo che necessitano di scegliere ed applicare lo strumento matematico più adeguato per la sua risoluzione, ma anche quesiti di tipo teorico, che richiedono la capacità, da parte dello studente, di costruire un concatenamento logico applicando in sequenza risultati teorici visti a lezione. La durata della prova scritta è di 100 minuti. Ciascun esercizio a risposta chiusa vale: 3 punti se giusto, 0 punti se senza risposta, -1 punto se sbagliato. Il voto finale è la somma dei punteggi ottenuti nei singoli esercizi aumentata di 2 punti. La lode si ottiene rispondendo in modo corretto a tutti i 10 esercizi. Durante lo svolgimento dell'esame scritto non è consentito tenere e consultare quaderni, libri, fogli con esercizi, formulari, calcolatrici. I risultati dell’esame vengono comunicati sul portale della didattica. E' possibile sostenere una prova orale integrativa (su richiesta dello studente) che può far variare il voto della prova scritta sia in positivo che in negativo. La prova orale integrativa va sostenuta nell'appello in cui si è sostenuto lo scritto ed è possibile solo se il voto conseguito nella prova scritta è di almeno 18/30.
Esporta Word