Il corso mira ad offrire un’analisi delle maggiori realizzazioni, nell’ambito delle strutture spaziali, di grande luce e a guscio, sia per quanto concerne le costruzioni degli anni 50-70, sia considerando il nuovo sviluppo di tali strutture nell’architettura contemporanea in Italia ed all’estero. Attraverso l’analisi dei metodi di modellazione e verifica, il corso mira a spiegare, in modo dettagliato, i diversi modelli di calcolo via via proposti, sia per la fase di form-finding sia per la fase di verifica per strutture di questo tipo. Il corso intende fornire uno sguardo critico sui diversi approcci utilizzati per il progetto di strutture leggere, dapprima, considerando le teorie impiegate per il progetto con materiali tradizionali e successivamente valutando le realizzazioni più atipiche ed avveniristiche. In questo ultimo caso, verrà approfondito l’uso di materiali sostenibili ed eco-friendly (legno e bamboo) e la progettazione di strutture trasportabili in ambito aerospaziale.
I processi di ricerca di forma, come il dynamic relaxation method, il particle spring model, il trust network analysis verranno illustrati insieme ai loro principi ed alle loro differenze per l’applicazione a strutture come i gusci a reticolo (Si prevede l’introduzione a software con Rhinoceros, Grasshopper, VisualNastran 4D). I metodi di calcolo e di genesi per le strutture a tensegrity ed origami saranno affrontati nei loro principi generali.
L’ottimizzazione strutturale di gusci e strutture spaziali e di grande luce verrà affrontata indagando i principali e i più innovativi metodi di ottimizzazione su base parametrica e topologica anche attraverso l’uso delle superfici di NURBS.
Il corso ha come ulteriore ed ultima finalità quella di individuare i principali metodi di verifica di tali strutture con particolare riferimento ai comportamenti di buckling locale e non locale delle calotte e dei gusci valutando l’interazione tra i fenomeni di instabilità attraverso l’analisi lineare e non lineare con modelli FEM. In particolare, il corso fornirà anche una carrellata degli attuali sistemi di consolidamento e monitoraggio permanente, oggi in uso, nelle strutture spaziali ed a guscio utilizzate per la copertura di spazi pubblici come piazze ed aeroporti.
The course aims to offer an analysis of the most important realizations, in the field of space structures, large span roofs and shells, regarding, at the same time, the buildings of the 50-70s, and the most important realizations with respect to nowadays architectures in Italy and all over the World. Through a detailed analysis of the modeling and verification methods, the course purposes to explain, the different approaches, progressively proposed, for the calculation of shell and spatial structures. For this motivation, the form-finding and the successively validation phase, for structures of this type, are presented. The course, in addition, aims to provide a critical point of view of the different methods introduced for the design of lightweight structures, firstly, considering the models employed for the realizations using traditional materials and successively evaluating atypical and futuristic prototypes. In these last cases, the use of sustainable and eco-friendly materials (timber and bamboo) and the design of transportable structures in the aerospace applications will be explored.
The form-finding processes (FFp), such as the dynamic relaxation method, the particle spring model, the truss network analysis, etc. are illustrated together with their principles and their differences for the FFp of vaults, grid shells and active bending structures (FFp will be implemented by Rhinoceros, Grasshopper, Visual-Nastran 4D, etc.). The calculation methods and the shape generating procedures for tensegrity and origami structures will be also addressed in their fundamental outlines. The structural optimization of shells and spatial structures will be evaluated by investigating the main and most innovative methods based on the parametric and topological approaches, also by the use of NURBS surfaces.
The course, finally, get the scope of identifying the most important validation procedures for these structures with respect to the criteria of local and non-local instability analysis of shells and vaults. The possible instability and coupled instability phenomenon will be studied through the application of linear and non-linear FEM models. In particular, the course will also provide an overview on the current retrofitting techniques and permanent monitoring systems, currently in use, in spatial and shell structures normally employed to cover public spaces such as squares and airports.
Nessuno
None
• Course Highlights and Short Programme:
• Shell and spatial structures: Light-weight structures: origins and developments. Iconic and emblematic cases in the European and American schools.
• Form finding approaches: dynamic relaxation method (DRM), particle spring model (PSM), thrust network analysis (TNA), multibody rope approach (MRA), R-funicularity. Theory and applications.
• Tensile and tension-compression lightweight structures: Tent structures, tensegrity and origami. Theory and fundament al features; Local and Non-local stability analysis. Snap-through instability and collapse of shell structures, instability for tensegrities.
• Structural optimization of shell and spatial structures: traditional and innovative approaches.
• Monitoring of shell and spatial structures: main technologies and applications.
Language: English
Notes: The course will be online by the Zoom Platform. The link will be sent some before the beginning of the lessons.
To participate please contact: amedeo.manuellobertetto@polito.it
Course Highlights and Short Programme:
• Shell and spatial structures: Light-weight structures: origins and developments. Iconic and emblematic cases in the European and American schools.
• Form finding approaches: dynamic relaxation method (DRM), particle spring model (PSM), thrust network analysis (TNA), multibody rope approach (MRA), R-funicularity. Theory and applications.
• Tensile and tension-compression lightweight structures: Tent structures, tensegrity and origami. Theory and fundament al features; Local and Non-local stability analysis. Snap-through instability and collapse of shell structures, instability for tensegrities.
• Structural optimization of shell and spatial structures: traditional and innovative approaches.
• Monitoring of shell and spatial structures: main technologies and applications.
Language: English
Notes: The course will be online by the Zoom Platform. The link will be sent some before the beginning of the lessons.
To participate please contact: amedeo.manuellobertetto@polito.it