Corso di Laurea in Ingegneria Energetica - Torino Corso di Laurea in Ingegneria Meccanica (Mechanical Engineering) - Torino Corso di Laurea in Ingegneria Informatica (Computer Engineering) - Torino Corso di Laurea in Electronic And Communications Engineering (Ingegneria Elettronica E Delle Comunicazioni) - Torino Corso di Laurea in Ingegneria Dei Materiali - Torino Corso di Laurea in Ingegneria Aerospaziale - Torino Corso di Laurea in Ingegneria Biomedica - Torino Corso di Laurea in Ingegneria Chimica E Alimentare - Torino Corso di Laurea in Ingegneria Civile - Torino Corso di Laurea in Ingegneria Edile - Torino Corso di Laurea in Ingegneria Meccanica - Torino Corso di Laurea in Matematica Per L'Ingegneria - Torino Corso di Laurea in Ingegneria Elettronica - Torino Corso di Laurea in Ingegneria Informatica - Torino Corso di Laurea in Ingegneria Del Cinema E Dei Mezzi Di Comunicazione - Torino Corso di Laurea in Ingegneria Gestionale - Torino Corso di Laurea in Ingegneria Gestionale - Torino
La fisica moderna ha aperto la strada alla conoscenza dettagliata dei fenomeni atomici e nucleari che costituiscono
oggigiorno i fondamenti di sempre maggiori applicazioni tecnologiche. I principi fisici che ne stanno alla base rappresentano pertanto un importante bagaglio culturale trasversale a diversi corsi di laurea ingegneristici.
L'insegnamento ha come obiettivo l'introduzione e la comprensione delle principali proprietà della fisica moderna, della struttura e dell'interazione nucleare, delle reazioni nucleari e delle particelle elementari. Le lezioni prevedono approfondimenti di carattere multidisciplinare relativi alla fisica atomica e nucleare, dando particolare enfasi alla descrizione delle evidenze sperimentali ed alle diverse applicazioni ingegneristiche connesse al campo dell'energia, dello spazio, dell'industria, dell'ambiente e della biomedicina.
Modern physics opened the door to the understanding of the atomic and nuclear phenomena, strictly related to many technological applications and make up an important cultural background to different engineering degree courses.
The aim of the course is to introduce the main physical principles related to modern physics, atomic and nuclear structure, nuclear reactions and particle physics. The course provides insights on multidisciplinary topics giving special emphasis on the description of the experimental concepts and to several technology applications to the field of the energy, aerospace, industry, environment and medicine.
Al termine dell'insegnamento gli studenti saranno in grado di:
- Conoscere e comprendere i principi fisici della fisica moderna, della meccanica quantistica e della relatività ristretta.
- Conoscere e comprendere i principi fisici legati all'interazione nucleare ed alle particelle elementari.
- Conoscere ed applicare le principali leggi di conservazione alle reazioni nucleari.
- Conoscere e comprendere nel dettaglio la natura dei decadimenti radioattivi e le principali fonti di radioattività ambientale.
- Conoscere le principali caratteristiche della propagazione della radiazione all'interno della materia al fine di comprendere diverse applicazioni tecnologiche con particolare attenzione al campo dell'energia e dello spazio.
- Conoscere e comprendere le principali applicazioni energetiche relative alla fissione e fusione nucleare.
- Applicare le conoscenze di natura teorica acquisite per risolvere esercizi pratici relativi alle diverse tipologie di reazioni nucleari
- Applicare le conoscenze acquisite per comprensione delle principali applicazioni ingegneristiche e tecnologiche connesse con i fenomeni subatomici trattati.
- Capacità di combinare elementi teorici e sviluppo di competenze metodologiche per trarne conclusioni utili in diverse problematiche reali, principalmente connesse con la radiazione nucleare e la radioattività ambientale.
The goal is the acquisition of the basic modern physics laws and principles related to atomic and nuclear interaction, nuclear stability, nuclear reactions. Understanding of the fundamental scientific and industrial applications related to the subatomic phenomena. Ability in the problem solving of realistic physical applications on the bases the considered principles and theoretichal models.
Per la corretta fruizione dell’insegnamento è richiesta un'approfondita conoscenza della fisica di base: meccanica, termodinamica, elettromagnetismo.
Basics of physics (mechanics, thermodynamics, electromagnetism).
L'insegnamento è organizzato in 3 moduli:
- I modulo (30 ore)
Principi di relatività ristretta ed equivalenza di Einstein tra massa ed energia. Elementi di cinematica e dinamica in reazioni nucleari. Principi della meccanica quantistica. Modelli atomici. Esperimenti ed applicazioni scientifiche e tecnologiche. Evidenze sperimentali dell'esistenza del nucleo. Sezione d'urto totale e differenziale. Dimensione, forma e densità del nucleo. Stabilità del nucleo, energia di legame nucleare, formula semiempirica di massa, modello a goccia. Proprietà generali delle reazioni nucleari e delle forze nucleari. Evidenze sperimentali ed applicazioni scientifiche e tecnologiche.
- II modulo (16 ore)
Legge statistica dei decadimenti radioattivi, radioattività ambientale, principali unità di misura della radiazione, esempi ed applicazioni. Decadimenti radioattivi alfa, beta e gamma. Interazione e diffusione di particelle cariche nella materia. Applicazioni scientifiche, energetiche, aerospaziali, biomediche.
- III modulo (14 ore)
Principi fisici della fissione e fusione nucleare, principali reazioni di fusione termonucleare nelle stelle ed in reattori. terrestri. Elementi di astrofisica nucleare. Introduzione alle particelle elementari.
- Introduction to special relativity. Mass-energy equivalence. Kinematics and dynamics in nuclear reactions. Basics elements in quantum mechanics and atom physics. Experiments and technological applications.
Introduction to scattering processes, total and differential cross section. Nuclear shapes and sizes, charge and matter distribution. Nuclear stability, binding energy, semi-empirical mass formula, liquid drop model. General properties of nuclear reactions and the nuclear force. Experiments and technological applications. (30 hours)
- The radioactive decay law, production and decay of radioactivity, growth of daughter activities. Natural radioactivity, radioactivity dating, units for measuring radiation. Experiments and applications. Alpha, Beta, Gamma decays. Interaction of radiation with matter. Scientific, industrial and biomedical applications. (16 hours)
- Physical principles of nuclear fission and fusion. Thermonuclear reactions in the stars and in reactors. Basics on nuclear astrophysics. Introduction to elementary particles. (14 hours)
L'insegnamento è strutturato in:
- 45 ore di lezioni in aula, mirate allo sviluppo di conoscenze relative ai principi fisici dell'interazione nucleare. Le lezioni
sono strutturate al fine di favorire la comprensione dei vari argomenti introducendo la trattazione teorica e modellistica in stretta connessione con le evidenze sperimentali e con le possibili applicazioni tecnologiche ed industriali.
- 15 ore di esercitazioni in aula focalizzate a stimolare l'abilità di applicare le conoscenze acquisite nella risoluzione di semplici problemi, nella modellizzazione e nell'analisi critica di realistici problemi applicativi.
The course consists of 46 hours of theoretical lessons and 14 hours of class exercises.
The lessons are structured in order to favor the understanding of the various topics by introducing the theoretical and modeling treatment in close connection with the experimental observations and with the related technological and industrial applications. Problems and exercises related to the lessons subjects will be solved in the tutorial classes with discussion about realistic physical problems.
- Halliday, Resnick, Fondamenti di fisica. Fisica moderna – Casa Editrice Ambrosiana.
- W.N. Cottingham, D.A. Greenwood, An Introduction to Nuclear Physics, Cambridge University Press
- J. Lilley, Nuclear Physics, Principles and Applications, Wiley (consigliato per approfondimenti)
- R.L. Jaffe, W. Taylor, The Physics of Energy, Cambridge University Press (consigliato per approfondimenti)
- F. Yang, J. Hamilton, Modern Atomic and Nuclear Physics, World Scientific (consigliato per approfondimenti)
- Dispense fornite dal docente sul portale della didattica.
- Halliday, Resnick, Fundamental physics. Modern physics, Wiley
- W.N. Cottingham, D.A. Greenwood, An Introduction to Nuclear Physics, Cambridge University Press
- J. Lilley, Nuclear Physics, Principles and Applications, Wiley
- Learning material provided online by the teacher.
Modalità di esame: Prova scritta (in aula); Prova orale facoltativa;
Exam: Written test; Optional oral exam;
...
L'esame è finalizzato a verificare le competenze di cui sopra (cfr Risultati dell'apprendimento attesi), accertare la conoscenza degli argomenti elencati nel programma, con la comprensione delle connesse applicazioni tecnologiche, e la capacità di elaborare le nozioni teoriche acquisite per la soluzione di problemi reali.
L'esame comprende uno scritto ed un orale facoltativo.
Lo scritto consiste in problemi simbolici/numerici e domande di teoria a risposta aperta su tutto il programma, al fine di accertare la capacità di risoluzione di quesiti e calcoli, di verificare un’adeguata conoscenza dei principi di fisica moderna e dell’interazione nucleare, anche in stretta connessione con le applicazioni tecnologiche ed industriali.
Il tempo complessivamente assegnato per la prova è di 1 ora e 45 minuti e per superare lo scritto occorre ottenere un punteggio complessivo pari a 18/30; il punteggio massimo conseguibile con lo scritto è pari a 30/30. Durante lo scritto non si possono portare in aula libri di alcun tipo o appunti del corso. Può essere consentito l’uso di una calcolatrice non programmabile per la soluzione di problemi numerici.
Sul portale della didattica verranno caricati dal docente diversi esempi di prove d'esame, alcune con tracce di soluzioni. Nell’ambito delle lezioni, verranno svolte due simulazioni di prova scritta con commenti e correzione dei quesiti.
La prova orale è facoltativa, salvo discrezione del docente che convocherà singolarmente gli studenti che necessitano una prova orale integrativa. L'orale riguarda tutti gli argomenti trattati nelle lezioni, al fine di accertare la comprensione dei fenomeni nucleari, della radiazione e connesse applicazioni tecnologiche. L’eventuale prova orale deve essere sostenuta nello stesso appello della prova scritta.
Il voto finale consiste nella media aritmetica della valutazione conseguita nella prova scritta e nell'orale.
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Exam: Written test; Optional oral exam;
The goal of the exam, in line with the quoted expected learning outcomes, is to test the knowledge of the candidate about the topics included in the program and to verify the skill in the understanding of the most important technological applications connected to the nuclear interaction and in the solution of problems.
The exam involves a written and an optional oral proof at the request of the student. The written proof includes simple problems (either symbolic or numeric) and open questions about all the subjects of the course, to test ability in problem solving and a wide knowledge of the basic concepts on modern and nuclear physics. The total allotted time is 2 hrs. The written proof is passed with a total score of at least 18/30; the maximum score is 30/30. During the written examination, students can only use a portable calculator as a supporting material. The oral proof is about all subjects treated in the lectures and is mainly oriented to test the understanding of the nuclear phenomenology, nuclear radiation and connected technological applications. The final mark is the average of written/oral scores.
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.
Modalità di esame: Prova orale facoltativa; Prova scritta tramite PC con l'utilizzo della piattaforma di ateneo;
L'esame è finalizzato a verificare l’acquisizione delle conoscenze degli argomenti elencati nel programma e delle capacità obiettivo dell’insegnamento (descritte nel campo Risultati dell'apprendimento attesi), con la comprensione delle connesse applicazioni tecnologiche e la capacità di elaborare le nozioni teoriche acquisite per la soluzione di problemi applicativi.
L'esame consiste in una prova scritta ed un orale facoltativo.
La prova scritta, effettuata nell’ambito della piattaforma Exam, sarà articolata nella soluzione
di problemi simbolici/numerici e domande di teoria a risposta aperta su tutto il programma, al fine di accertare la capacità di risoluzione di quesiti e calcoli, di verificare un’adeguata conoscenza dei principi di fisica moderna e dell’interazione nucleare, anche in stretta connessione con le applicazioni tecnologiche ed industriali.
Le domande aperte di teoria e, ove espressamente richiesto lo svolgimento degli esercizi, devono essere svolte su fogli. Le risposte dovranno essere fotografate con la webcam del pc. Al termine della prova, dopo la chiusura della piattaforma Exam, gli studenti dovranno inoltre inviare entro 5 minuti ulteriori foto delle risposte alle domande aperte utilizzando la funzione “Carica elaborato” inserita all’interno della PoliTO App.
Il tempo complessivamente assegnato per la prova è di 1 ora e 45 minuti. Per superare lo scritto occorre ottenere un punteggio complessivo pari a 18/30; votazione massima conseguibile con lo scritto è pari a 30/30. Durante lo scritto non si possono consultare libri o appunti del corso; sarà consentito l’uso di calcolatrice per la soluzione dei problemi numerici.
Sul portale della didattica verranno caricati dal docente diversi esempi di prove d'esame, alcune con tracce di soluzioni. Nell’ambito delle lezioni, verranno svolte due simulazioni di prova scritta con commenti e correzione dei quesiti.
La prova orale è facoltativa, salvo discrezione del docente che convocherà singolarmente gli studenti che necessitano una prova orale integrativa. L’orale, svolto mediante la piattaforma Virtual Classroom, riguarda tutti gli argomenti trattati nelle lezioni, al fine di accertare la comprensione dei fenomeni nucleari, della radiazione e connesse applicazioni tecnologiche. L’eventuale prova orale deve essere sostenuta nello stesso appello della prova scritta.
Il voto finale consiste nella media aritmetica della valutazione conseguita nella prova scritta e nell'orale.
Exam: Optional oral exam; Computer-based written test using the PoliTo platform;
The goal of the exam, in line with the quoted expected learning outcomes, is to test the knowledge of the candidate about the topics included in the program and to verify the skill in the understanding of the most important technological applications connected to the nuclear interaction and the capacity to elaborate the theoretical topics in the solution of several problems.
The exam involves a written and an optional oral proof at the request of the student.
The written proof, by mean of the Exam platform, is divided into:
a) multiple choice and numeric questions about the solution of physical problems;
b) open questions about all the subjects of the course, to test ability in problem solving and a wide knowledge of the basic concepts on modern and nuclear physics.
The answers of the open questions must be written on white sheets and photographed with the webcam. Moreover, at the end, the students must send the photos of the same answers by means of the PoliTO App.
The total allotted time is 1 h and 45 m. The written proof is passed with a total score of at least 18/30; the maximum score is 30/30. During the written examination, students can only use a portable calculator as a supporting material.
At the end of the lessons, some simulations of the written test will be scheduled within the Exercise platform.
The optional oral proof, within the Virtual Classroom platform, is about all subjects treated in the lectures and is mainly oriented to test the understanding of the nuclear phenomenology, nuclear radiation and connected technological applications. The final mark is the average of written/oral scores.
Modalità di esame: Prova scritta (in aula); Prova orale facoltativa; Prova scritta tramite PC con l'utilizzo della piattaforma di ateneo;
L'esame è finalizzato a verificare l’acquisizione delle conoscenze degli argomenti elencati nel programma e delle capacità obiettivo dell’insegnamento (descritte nel campo Risultati dell'apprendimento attesi), con la comprensione delle connesse applicazioni tecnologiche, e la capacità di elaborare le nozioni teoriche acquisite per la soluzione di problemi applicativi.
Le regole e le procedure d’esame in modalità mista sono equivalenti per l’esame in remoto ed in presenza.
L'esame consiste in una prova scritta ed un orale facoltativo.
La prova scritta, effettuata nell’ambito della piattaforma Exam in modalità remoto ed in aula in modalità in presenza, sarà articolata nella soluzione di problemi simbolici/numerici e domande di teoria a risposta aperta su tutto il programma, al fine di accertare la capacità di risoluzione di quesiti e calcoli, di verificare un’adeguata conoscenza dei principi di fisica moderna e dell’interazione nucleare, anche in stretta connessione con le applicazioni tecnologiche ed industriali.
Le domande aperte di teoria e, ove espressamente richiesto lo svolgimento degli esercizi, devono essere svolte su fogli.
Per l’esame in remoto, le risposte dovranno essere fotografate con la webcam del pc. Al termine della prova, dopo la chiusura della piattaforma Exam, gli studenti dovranno inoltre inviare entro 5 minuti ulteriori foto delle risposte alle domande aperte utilizzando la funzione “Carica elaborato” inserita all’interno della PoliTO App.
Per l’esame in presenza in aula, tutte le risposte (a scelta multipla, numeriche e aperte) vengono svolte su fogli e consegnati al docente al termine della prova.
Il tempo complessivamente assegnato per la prova è di 1 ora e 45 minuti. Per superare lo scritto occorre ottenere un punteggio complessivo pari a 18/30; votazione massima conseguibile con lo scritto è pari a 30/30. Durante lo scritto non si possono consultare libri o appunti del corso; sarà consentito l’uso di calcolatrice per la soluzione dei problemi numerici.
Sul portale della didattica verranno caricati dal docente diversi esempi di prove d'esame, alcune con tracce di soluzioni.
Nell’ambito delle lezioni, verranno effettuate alcune simulazioni con la piattaforma Exercise o in presenza in aula.
La prova orale è facoltativa, salvo discrezione del docente che convocherà singolarmente gli studenti che necessitano una prova orale integrativa.
L’orale, svolto in remoto mediante la piattaforma Virtual Classroom o in presenza in aula, riguarda tutti gli argomenti trattati nelle lezioni, al fine di accertare la comprensione dei fenomeni nucleari, della radiazione e connesse applicazioni tecnologiche. L’eventuale prova orale deve essere sostenuta nello stesso appello della prova scritta.
Il voto finale consiste nella media aritmetica della valutazione conseguita nella prova scritta e nell'orale.
Exam: Written test; Optional oral exam; Computer-based written test using the PoliTo platform;
The goal of the exam, in line with the quoted expected learning outcomes, is to test the knowledge of the candidate about the topics included in the program and to verify the skill in the understanding of the most important technological applications connected to the nuclear interaction and the capacity to elaborate the theoretical topics in the solution of several problems.
Assessment and grading criteria are the same for online and onsite exam.
The exam involves a written and an optional oral proof at the request of the student.
The written proof, by mean of the Exam platform on in the classroom, is divided into:
a) multiple choice and numeric questions about the solution of physical problems;
b) open questions about all the subjects of the course, to test ability in problem solving and a wide knowledge of the basic concepts on modern and nuclear physics.
In the online exam, the answers of the open questions must be written on white sheets and photographed with the webcam. Moreover, at the end, the students must send the photos of the same answers by means of the PoliTO App. In the onsite exam, all the answers (multiple choice, numeric and open questions) will be written on sheets and hand over to the teacher.
The total allotted time is 1 h and 45 m. The written proof is passed with a total score of at least 18/30; the maximum score is 30/30. During the written examination, students can only use a portable calculator as a supporting material.
At the end of the lessons, some simulations of the written test will be scheduled within the Exercise platform or in the classroom.
The optional oral proof, within the Virtual Classroom platform or onsite, is about all subjects treated in the lectures and is mainly oriented to test the understanding of the nuclear phenomenology, nuclear radiation and connected technological applications. The final mark is the average of written/oral scores.