PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

Elenco notifiche



Quantum computing

01TAHIU

A.A. 2022/23

Course Language

Inglese

Degree programme(s)

Doctorate Research in Ingegneria Informatica E Dei Sistemi - Torino

Course structure
Teaching Hours
Lezioni 20
Lecturers
Teacher Status SSD h.Les h.Ex h.Lab h.Tut Years teaching
Montrucchio Bartolomeo Professore Ordinario IINF-05/A 12 0 0 0 7
Co-lectures
Espandi

Context
SSD CFU Activities Area context
*** N/A ***    
The course aims at introducing Quantum Computing, starting from an introduction to quantum mechanics up to a description of how to use IBM Q quantum computers in order to execute simple quantum computing programs directly on IBM hardware. The focus is on the relationship between quantum computation and computer science. Being an introductory course it can be of interest for the Information and system engineering PhD course and also for others, since Quantum Computing is expected to revolutionize research in all its aspects in 10-20 years. The course will be in English.
The course aims at introducing Quantum Computing, starting from an introduction to quantum mechanics up to a description of how to use IBM Q quantum computers in order to execute simple quantum computing programs directly on IBM hardware. The focus is on the relationship between quantum computation and computer science. Being an introductory course it can be of interest for the Information and system engineering PhD course and also for others, since Quantum Computing is expected to revolutionize research in all its aspects in 10-20 years. The course will be in English.
-
-
Introduction to quantum mechanics. Dirac notation. Qubits. Entanglement. Quantum gates (CNOT, Toffoli and others). Bloch sphere. Teleportation. IBM Q quantum computer and other quantum computers and emulators. Advantages and limitations of quantum computing. Hybrid computing. Amplitude amplification. Grover’s algorithm. Dense coding. Quantum-key distribution. Quantum radiosity. Physical implementation and decoherence time (hint only). State of the art analysis and open problems. The final examination will be a presentation by the PhD student on a research argument pertaining to the course.
Introduction to quantum mechanics. Dirac notation. Qubits. Entanglement. Quantum gates (CNOT, Toffoli and others). Bloch sphere. Teleportation. IBM Q quantum computer and other quantum computers and emulators. Advantages and limitations of quantum computing. Hybrid computing. Amplitude amplification. Grover’s algorithm. Dense coding. Quantum-key distribution. Quantum radiosity. Physical implementation and decoherence time (hint only). State of the art analysis and open problems. The final examination will be a presentation by the PhD student on a research argument pertaining to the course.
In presenza
On site
Presentazione orale
Oral presentation
P.D.2-2 - Giugno
P.D.2-2 - June