PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

Elenco notifiche



Spectral and machine learning methods for uncertainty quantification

01UJCRV

A.A. 2023/24

Course Language

Inglese

Degree programme(s)

Doctorate Research in Ingegneria Elettrica, Elettronica E Delle Comunicazioni - Torino

Course structure
Teaching Hours
Lezioni 22
Lecturers
Teacher Status SSD h.Les h.Ex h.Lab h.Tut Years teaching
Trinchero Riccardo   Professore Associato IIET-01/A 9 0 0 0 4
Co-lectures
Espandi

Context
SSD CFU Activities Area context
*** N/A ***    
Il corso si concentrerà su due metodologie per la stima dell’incertezza ampiamente trattate nell’ambito della ricerca nell’ultimo decennio, quali: metodi spettrali basati sui polinomi del caos e tecniche di regressione Machine Learning come la Support Vector Machine e i processi Gaussiani. Le lezioni si concentreranno su aspetti teorici e implementativi dei vari metodi. Una rigorosa formulazione matematica sarà arricchita da esempi illustrativi. Alla fine del corso, lo studente acquisirà una solida conoscenza delle metodologie presentate e dovrà essere in grado di applicare tali tecniche all’interno della propria ricerca in modo indipendente.
This course will address the application of two classes of techniques for the uncertainty quantification, that became subject of intensive research in the last decade, namely, spectral methods based on the so-called “polynomial chaos” framework, and Machine Learning techniques, such as Support Vector Machines and Gaussian Process regression. The lessons will cover the main theoretical notions and implementational details. A rigorous mathematical framework is complemented by illustrative examples. At the end of the course, the attendees are expected to be acquainted with the tools and capable of independently apply them to relevant problems in their respective fields of application.
Algebra Lineare, teoria della probabilità e statistica .
Linear algebra, probability theory and statistics.
Introduzione al corso, motivazioni e definizioni. Il metodo Monte Carlo. Polinomi del caos e polinomi ortogonali. Metodo di Galerkin stocastico. Metodo di collocazione stocastico. Metamodelli. Metodo dei minimi quadrati. Metodo stochastic testing. Metodi per l’analisi della sensitività globale. Parametri stocastici correlati. Tecniche di regressione basate su Support Vector Machine e Least-Squares Support Vector Machine. Modelli deterministici e probabilistici. Regressione basata su processi Gaussiani.
Introduction (motivations and definitions). Monte Carlo method. The polynomial chaos expansion and orthogonal polynomials. Stochastic Galerkin method. Stochastic collocation method. Metamodels. Least-square regression method. Stochastic testing method. Global sensitivity analysis. Correlated random parameters. Support Vector Machine and Least-Squares Support Vector Machine regression. Deterministic vs. probabilistic models. Gaussian process regression.
In presenza
On site
Presentazione orale - Presentazione report scritto
Oral presentation - Written report presentation
P.D.2-2 - Aprile
P.D.2-2 - April
• Tuesday April 2 2024 from 9 to 11.30 - classroom to be defined • Wednesday April 3 2024 from 9 to 12 - classroom to be defined • Thursday April 4 2024 from 9 to 12 - classroom to be defined • Friday April 5 2024 from 9 to 12 - classroom to be defined • Monday April 15 2024 from 9 to 11.30 - classroom to be defined • Tuesday April 16 2024 from 9 to 11.30 - classroom to be defined • Wednesday April 17 2024 from 9 to 11.30 - classroom to be defined • Thursday April 18 2024 from 9 to 11.30 - classroom to be defined
• Tuesday April 2 2024 from 9 to 11.30 - classroom to be defined • Wednesday April 3 2024 from 9 to 12 - classroom to be defined • Thursday April 4 2024 from 9 to 12 - classroom to be defined • Friday April 5 2024 from 9 to 12 - classroom to be defined • Monday April 15 2024 from 9 to 11.30 - classroom to be defined • Tuesday April 16 2024 from 9 to 11.30 - classroom to be defined • Wednesday April 17 2024 from 9 to 11.30 - classroom to be defined • Thursday April 18 2024 from 9 to 11.30 - classroom to be defined