PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

Elenco notifiche



Scienza delle costruzioni

11CFOMK, 11CFOMQ

A.A. 2023/24

Lingua dell'insegnamento

Italiano

Corsi di studio

Corso di Laurea in Ingegneria Energetica - Torino
Corso di Laurea in Matematica Per L'Ingegneria - Torino

Organizzazione dell'insegnamento
Didattica Ore
Lezioni 60
Esercitazioni in aula 20
Tutoraggio 20
Docenti
Docente Qualifica Settore h.Lez h.Es h.Lab h.Tut Anni incarico
Invernizzi Stefano - Corso 1 Professore Associato CEAR-06/A 60 0 0 0 6
Zavarise Giorgio - Corso 2 Professore Ordinario CEAR-06/A 60 0 0 0 11
Collaboratori
Espandi

Didattica
SSD CFU Attivita' formative Ambiti disciplinari
ICAR/08 8 C - Affini o integrative Attività formative affini o integrative
2023/24
Il corso si pone come una cerniera tra le materie di base dei primi tre semestri (matematica e fisica) e le materie applicative e progettuali dei semestri successivi. Nel corso vengono presentati i principi teorici fondamentali che consentono di analizzare il comportamento meccanico dei solidi elastici ed in particolare quello dei sistemi di travi. Il percorso formativo sviluppa quindi i temi di base della meccanica dei solidi elastici, partendo dalla definizione dei concetti di azione, vincolo, elemento strutturale, tensione e deformazione, per arrivare alle verifiche di resistenza e deformabilità delle strutture. Vengono presentate le equazioni di equilibrio, di congruenza e del legame costitutivo, necessarie per lo studio del solido elastico tridimensionale e la sua particolarizzazione ai corpi monodimensionali. Si affronta quindi lo studio delle strutture iperstatiche mediante l’impiego di vari metodi, e il problema dell’instabilità dell’equilibrio.
The course acts as a hinge between the basic subjects of the first three semesters (mathematics and physics) and the applicative and design subjects of the following semesters. The course presents the basic theoretical principles that allow us to analyze the mechanical behavior of elastic solids, and in particular that of the beam structures. The training path then develops the basic themes of the mechanics of elastic solids, starting from the definition of the concepts of force, constraint, structural element, stress, and deformation, to arrive at the verification of resistance and deformability of the structures. The equilibrium equations, strain definition and constitutive law, that are necessary for the study of the three-dimensional elastic bodies and their particularization to the one-dimensional geometry are presented. The final part of the course deals with the solution of hyperstatic structures using classical methods, and the problem of buckling instability of elastic structures.
Oltre a conoscere ed aver compreso i concetti teorici, l’allievo dovrà essere in grado di applicarli ai problemi proposti. Con riferimento ai sistemi isostatici ed iperstatici di travi nel piano, l’allievo dovrà essere in grado di determinare le reazioni vincolari e di tracciare i diagrammi di sollecitazione e la linea elastica; di calcolare le tensioni nelle travi sulla base del principio di Saint Venant; di effettuare le verifiche di deformabilità e resistenza; di verificare l'instabilità dell'equilibrio delle aste caricate di punta.
Oltre a conoscere ed aver compreso i concetti teorici, l’allievo dovrà essere in grado di applicarli ai problemi proposti. Con riferimento ai sistemi isostatici ed iperstatici di travi nel piano, l’allievo dovrà essere in grado di determinare le reazioni vincolari e di tracciare i diagrammi di sollecitazione e la linea elastica; di calcolare le tensioni nelle travi sulla base del principio di Saint Venant; di effettuare le verifiche di deformabilità e resistenza; di verificare l'instabilità dell'equilibrio delle aste caricate di punta.
Conoscenza dei contenuti dei corsi di Matematica (studio di funzioni e calcolo di derivate e integrali, calcolo matriciale e problemi agli autovalori/autovettori), Geometria (concetti basilari di geometria analitica) e Fisica (concetti basilari di cinematica e statica del corpo rigido).
Conoscenza dei contenuti dei corsi di Matematica (studio di funzioni e calcolo di derivate e integrali, calcolo matriciale e problemi agli autovalori/autovettori), Geometria (concetti basilari di geometria analitica) e Fisica (concetti basilari di cinematica e statica del corpo rigido).
Introduzione al corso - ore: 1 Presentazione del corso, riferimenti bibliografici, regole e modalità d'esame. Inquadramento generale del problema strutturale - ore: 2 Introduzione agli aspetti cinematici: struttura labile e struttura fissa. Introduzione agli aspetti statici: ipostaticità, isostaticità, iperstaticità. Definizione del modello del problema strutturale: elementi e tipologie strutturali, sezioni, materiali, carichi, vincoli. Risposta strutturale: concetto di equilibrio, reazioni vincolari, deformabilità strutturale e meccanismi di collasso. Cenni sulla modellazione numerica. Schematizzazione del problema strutturale nei sotto-problemi fondamentali. Riferimenti al testo: Cap. 1. Geometria delle aree - ore: 2 Definizione delle proprietà geometriche e loro determinazione: baricentro, momento statico, momento d'inerzia e centrifugo, nocciolo centrale d'inerzia, direzioni e momenti principali di inerzia. Leggi di trasformazione, effetti dovuti a presenza di simmetrie. Riferimenti al testo: Cap. 2. Cinematica e statica dei sistemi di travi - ore: 4 Gradi di libertà di un corpo rigido. Vincoli elementari esterni ed interni: rappresentazione grafica e aspetti cinematici connessi. Classificazione delle strutture mediante analisi cinematica: 1° e 2° teorema delle catene cinematiche. Equazioni cardinali della statica. Definizione statica dei vincoli piani, schema riassuntivo per l'analisi statica e cinematica. Riferimenti al testo: Par. 3.1, 3.2, 3.4-3.6, 3.8. Calcolo delle reazioni vincolari per strutture isostatiche - ore: 3 Metodo generale, metodo delle equazioni ausiliarie. Calcolo delle reazioni vincolari mediante il Principio dei Lavori Virtuali (PLV). Metodi grafici: poligono delle forze e poligono funicolare. Riferimenti al testo: Cap. 4.1-4.3. Caratteristiche della sollecitazione nelle travi - ore: 6 Definizione di Sforzo Normale, Momento, Taglio (M, N, T). L'equilibrio di un tronco infinitesimo di trave: equazioni differenziali per M, N, T. Convenzioni per il tracciamento dei diagrammi di sollecitazione. Applicazione del PLV al calcolo delle sollecitazioni in una sezione. Primi esempi di tracciamento dei diagrammi di sollecitazione Riferimenti al testo: Cap. 5. Strutture isostatiche e reticolari - ore: 3 Caratteristiche fondamentali. Travi Gerber. Travi reticolari isostatiche: metodo dell'equilibrio dei nodi, metodo delle sezioni di Ritter. Riferimenti al testo: Par. 6.1-6.3. Analisi della deformazione - ore: 4 Concetto di 'campo', matrice jacobiana, matrice di rotazione, matrice di deformazione. Il tensore di deformazione: dilatazioni e scorrimenti. Cambio di base del tensore di deformazione, direzioni principali, invarianti di deformazione, dilatazione cubica, equazioni di compatibilità. Riferimenti al testo: Par. 7.1-7.5. Analisi della tensione - ore: 4 Concetto di sforzo, il tensore degli sforzi. Il tetraedro di Cauchy, reciprocità, tensioni tangenziali. Cambio di base del tensore di tensione, direzioni principali, invarianti di tensione, tensione idrostatica e tensione deviatorica. Cerchi di Mohr, particolarizzazione allo stato piano di tensione. Riferimenti al testo: Par. 7.6-7.9. Il solido elastico - ore: 5 Equazioni indefinite dell'equilibrio, dualità statico-cinematica. Un esempio di problema elastico. Il Principio dei Lavori Virtuali (PLV). Corpo elastico lineare omogeneo isotropo. Potenziale elastico, potenziale elastico complementare. Sviluppo del potenziale in serie di Taylor, legge di Hooke. Teoremi di Kirchhoff, Betti, Clapeyron. Isotropia, costruzione del legame elastico a partire dal potenziale elastico complementare. Limiti e significato fisico delle costanti elastiche. Riferimenti al testo: Par. 8.1-8.9. Criteri di resistenza dei materiali - ore: 3 Impostazione generale, criteri di Rankine, Tresca, Mohr-Coulomb, Von Mises. Riferimenti al testo: Par. 8.10, 8.11. Il problema di De Saint Venant - ore: 9 Introduzione, ipotesi, sollecitazioni fondamentali e composte. Sforzo normale, flessione retta. Torsione in sezione cilindrica a sezione piena, cava, in parete spessa; torsione in sezione generica; torsione nelle sezioni sottili aperte e chiuse. Rapporti di rigidezza fra sezioni aperte e sezioni chiuse; centro di torsione; centro di taglio. Taglio retto, fattore di taglio. Sollecitazioni composte: sforzo normale eccentrico, flessione deviata, nocciolo d'inerzia; taglio deviato. Riferimenti al testo: Cap. 9. Teoria tecnica della trave - ore: 3 Il problema della trave elastica rettilinea espresso in forma matriciale. La linea elastica: effetti del momento e del taglio. Rotazioni e spostamenti notevoli. Composizione di rotazioni e spostamenti. Riferimenti al testo: Par. 10.1, 10.2, 10.4-10.6. Simmetria e antimetria assiale - ore: 1 Inquadramento, vantaggi, determinazione delle condizioni di vincolo in mezzeria. Riferimenti al testo: Par. 12.1-12.3. Soluzione di strutture iperstatiche - ore: 6 Basi teoriche e modalità esecutive del metodo delle forze per la soluzione di problemi iperstatici.. Distorsioni termiche. Riferimenti al testo: Par. 13.1-13.3, 13.6. Instabilità dell'equilibrio - ore: 4 Introduzione e concetti generali. Sistemi discreti ad un grado di libertà e a più gradi di libertà; comportamento post-critico. Sistemi ad elasticità diffusa. L'asta caricata di punta: carico critico di Eulero, lunghezza libera di inflessione, snellezza. Riferimenti al testo: Par. 17.1-17.5. Argomenti delle esercitazioni - ore 20 • Geometria delle aree; • Classificazione delle strutture mediante analisi cinematica; • Studio degli atti di moto rigido delle catene cinematiche; • Determinazione delle reazioni vincolari mediante le equazioni cardinali della statica, il metodo delle equazioni ausiliarie e il PLV; • Tracciamento dei diagrammi di sollecitazione; • Travi Gerber e strutture reticolari; • Analisi della deformazione e della tensione. Applicazioni dei cerchi di Mohr; • Verifica delle sezioni per i vari casi del De Saint Venant; • Deformabilità delle strutture mediante integrazione della linea elastica - casi notevoli e casi generali; • Semplificazioni mediante utilizzo della simmetria/antimetria; • Risoluzione di strutture iperstatiche; • Instabilità dell'equilibrio per sistemi discreti e sistemi continui. Nota Eventuali piccole variazioni relativamente alle tempistiche e ai contenuti saranno possibili per venire incontro a specifiche esigenze didattiche.
Introduzione al corso - ore: 1 Presentazione del corso, riferimenti bibliografici, regole e modalità d'esame. Inquadramento generale del problema strutturale - ore: 2 Introduzione agli aspetti cinematici: struttura labile e struttura fissa. Introduzione agli aspetti statici: ipostaticità, isostaticità, iperstaticità. Definizione del modello del problema strutturale: elementi e tipologie strutturali, sezioni, materiali, carichi, vincoli. Risposta strutturale: concetto di equilibrio, reazioni vincolari, deformabilità strutturale e meccanismi di collasso. Cenni sulla modellazione numerica. Schematizzazione del problema strutturale nei sotto-problemi fondamentali. Riferimenti al testo: Cap. 1. Geometria delle aree - ore: 2 Definizione delle proprietà geometriche e loro determinazione: baricentro, momento statico, momento d'inerzia e centrifugo, nocciolo centrale d'inerzia, direzioni e momenti principali di inerzia. Leggi di trasformazione, effetti dovuti a presenza di simmetrie. Riferimenti al testo: Cap. 2. Cinematica e statica dei sistemi di travi - ore: 4 Gradi di libertà di un corpo rigido. Vincoli elementari esterni ed interni: rappresentazione grafica e aspetti cinematici connessi. Classificazione delle strutture mediante analisi cinematica: 1° e 2° teorema delle catene cinematiche. Equazioni cardinali della statica. Definizione statica dei vincoli piani, schema riassuntivo per l'analisi statica e cinematica. Riferimenti al testo: Par. 3.1, 3.2, 3.4-3.6, 3.8. Calcolo delle reazioni vincolari per strutture isostatiche - ore: 3 Metodo generale, metodo delle equazioni ausiliarie. Calcolo delle reazioni vincolari mediante il Principio dei Lavori Virtuali (PLV). Metodi grafici: poligono delle forze e poligono funicolare. Riferimenti al testo: Cap. 4.1-4.3. Caratteristiche della sollecitazione nelle travi - ore: 6 Definizione di Sforzo Normale, Momento, Taglio (M, N, T). L'equilibrio di un tronco infinitesimo di trave: equazioni differenziali per M, N, T. Convenzioni per il tracciamento dei diagrammi di sollecitazione. Applicazione del PLV al calcolo delle sollecitazioni in una sezione. Primi esempi di tracciamento dei diagrammi di sollecitazione Riferimenti al testo: Cap. 5. Strutture isostatiche e reticolari - ore: 3 Caratteristiche fondamentali. Travi Gerber. Travi reticolari isostatiche: metodo dell'equilibrio dei nodi, metodo delle sezioni di Ritter. Riferimenti al testo: Par. 6.1-6.3. Analisi della deformazione - ore: 4 Concetto di 'campo', matrice jacobiana, matrice di rotazione, matrice di deformazione. Il tensore di deformazione: dilatazioni e scorrimenti. Cambio di base del tensore di deformazione, direzioni principali, invarianti di deformazione, dilatazione cubica, equazioni di compatibilità. Riferimenti al testo: Par. 7.1-7.5. Analisi della tensione - ore: 4 Concetto di sforzo, il tensore degli sforzi. Il tetraedro di Cauchy, reciprocità, tensioni tangenziali. Cambio di base del tensore di tensione, direzioni principali, invarianti di tensione, tensione idrostatica e tensione deviatorica. Cerchi di Mohr, particolarizzazione allo stato piano di tensione. Riferimenti al testo: Par. 7.6-7.9. Il solido elastico - ore: 5 Equazioni indefinite dell'equilibrio, dualità statico-cinematica. Un esempio di problema elastico. Il Principio dei Lavori Virtuali (PLV). Corpo elastico lineare omogeneo isotropo. Potenziale elastico, potenziale elastico complementare. Sviluppo del potenziale in serie di Taylor, legge di Hooke. Teoremi di Kirchhoff, Betti, Clapeyron. Isotropia, costruzione del legame elastico a partire dal potenziale elastico complementare. Limiti e significato fisico delle costanti elastiche. Riferimenti al testo: Par. 8.1-8.9. Criteri di resistenza dei materiali - ore: 3 Impostazione generale, criteri di Rankine, Tresca, Mohr-Coulomb, Von Mises. Riferimenti al testo: Par. 8.10, 8.11. Il problema di De Saint Venant - ore: 9 Introduzione, ipotesi, sollecitazioni fondamentali e composte. Sforzo normale, flessione retta. Torsione in sezione cilindrica a sezione piena, cava, in parete spessa; torsione in sezione generica; torsione nelle sezioni sottili aperte e chiuse. Rapporti di rigidezza fra sezioni aperte e sezioni chiuse; centro di torsione; centro di taglio. Taglio retto, fattore di taglio. Sollecitazioni composte: sforzo normale eccentrico, flessione deviata, nocciolo d'inerzia; taglio deviato. Riferimenti al testo: Cap. 9. Teoria tecnica della trave - ore: 3 Il problema della trave elastica rettilinea espresso in forma matriciale. La linea elastica: effetti del momento e del taglio. Rotazioni e spostamenti notevoli. Composizione di rotazioni e spostamenti. Riferimenti al testo: Par. 10.1, 10.2, 10.4-10.6. Simmetria e antimetria assiale - ore: 1 Inquadramento, vantaggi, determinazione delle condizioni di vincolo in mezzeria. Riferimenti al testo: Par. 12.1-12.3. Soluzione di strutture iperstatiche - ore: 6 Basi teoriche e modalità esecutive del metodo delle forze per la soluzione di problemi iperstatici.. Distorsioni termiche. Riferimenti al testo: Par. 13.1-13.3, 13.6. Instabilità dell'equilibrio - ore: 4 Introduzione e concetti generali. Sistemi discreti ad un grado di libertà e a più gradi di libertà; comportamento post-critico. Sistemi ad elasticità diffusa. L'asta caricata di punta: carico critico di Eulero, lunghezza libera di inflessione, snellezza. Riferimenti al testo: Par. 17.1-17.5. Argomenti delle esercitazioni - ore 20 • Geometria delle aree; • Classificazione delle strutture mediante analisi cinematica; • Studio degli atti di moto rigido delle catene cinematiche; • Determinazione delle reazioni vincolari mediante le equazioni cardinali della statica, il metodo delle equazioni ausiliarie e il PLV; • Tracciamento dei diagrammi di sollecitazione; • Travi Gerber e strutture reticolari; • Analisi della deformazione e della tensione. Applicazioni dei cerchi di Mohr; • Verifica delle sezioni per i vari casi del De Saint Venant; • Deformabilità delle strutture mediante integrazione della linea elastica - casi notevoli e casi generali; • Semplificazioni mediante utilizzo della simmetria/antimetria; • Risoluzione di strutture iperstatiche; • Instabilità dell'equilibrio per sistemi discreti e sistemi continui. Nota Eventuali piccole variazioni relativamente alle tempistiche e ai contenuti saranno possibili per venire incontro a specifiche esigenze didattiche.
Le esercitazioni si svolgeranno in aula: verranno affrontati problemi strutturali in cui applicare i risultati della teoria. Sono previste esercitazioni pratiche presso un laboratorio didattico di strutture con possibilità di realizzare strutture modello, applicare carichi e misurare gli spostamenti indotti. E’ prevista una visita di laboratorio per assistere all’esecuzione di prove meccaniche per la determinazione della resistenza dei materiali.
Le esercitazioni si svolgeranno in aula: verranno affrontati problemi strutturali in cui applicare i risultati della teoria. Sono previste esercitazioni pratiche presso un laboratorio didattico di strutture con possibilità di realizzare strutture modello, applicare carichi e misurare gli spostamenti indotti. E’ prevista una visita di laboratorio per assistere all’esecuzione di prove meccaniche per la determinazione della resistenza dei materiali.
Teoria ed esercizi Carpinteri, A. (1995) Scienza delle Costruzioni, vol. 1, Bologna, Pitagora Editrice. Carpinteri, A. (1992) Scienza delle Costruzioni, vol. 2, Bologna, Pitagora Editrice. Testi di consultazione - esercizi I testi di seguito elencati sono disponibili nella biblioteca di Ateneo. Bertero, M., Grasso S. (1970) Esercizi di Scienza delle Costruzioni, Torino, Levrotto e Bella. Viola, E. (1993) Esercitazioni di Scienza delle Costruzioni, Vol. 1,- Strutture isostatiche e geometria delle masse, Bologna, Pitagora Editrice. Viola, E. (1985) Esercitazioni di Scienza delle Costruzioni, Vol. 2,- Strutture iperstatiche e verifiche di resistenza, Bologna, Pitagora Editrice. Testi di consultazione - teoria/esercizi I testi di seguito elencati sono disponibili nella biblioteca di Ateneo. Capurso, M. (1995) Lezioni di Scienza delle Costruzioni, Bologna, Pitagora Editrice. Belluzzi, O. (1966) Scienza delle Costruzioni, vol. 1 e 2, Bologna, Zanichelli. Di Tommaso, A. (1995) Fondamenti di Scienza delle Costruzioni, vol. 1, Bologna, Pàtron Editore. Di Tommaso, A. (2006) Fondamenti di Scienza delle Costruzioni, vol. 2 e 3, Bologna, Pàtron Editore. Viola, E. (1990) Scienza delle Costruzioni ,Vol. 1 - Teoria dell'elasticità, Bologna, Pitagora Editrice. Viola, E. (19923) Scienza delle Costruzioni, Vol. 3 - Teoria della trave, Bologna, Pitagora Editrice.
Teoria ed esercizi Carpinteri, A. (1995) Scienza delle Costruzioni, vol. 1, Bologna, Pitagora Editrice. Carpinteri, A. (1992) Scienza delle Costruzioni, vol. 2, Bologna, Pitagora Editrice. Testi di consultazione - esercizi I testi di seguito elencati sono disponibili nella biblioteca di Ateneo. Bertero, M., Grasso S. (1970) Esercizi di Scienza delle Costruzioni, Torino, Levrotto e Bella. Viola, E. (1993) Esercitazioni di Scienza delle Costruzioni, Vol. 1,- Strutture isostatiche e geometria delle masse, Bologna, Pitagora Editrice. Viola, E. (1985) Esercitazioni di Scienza delle Costruzioni, Vol. 2,- Strutture iperstatiche e verifiche di resistenza, Bologna, Pitagora Editrice. Testi di consultazione - teoria/esercizi I testi di seguito elencati sono disponibili nella biblioteca di Ateneo. Capurso, M. (1995) Lezioni di Scienza delle Costruzioni, Bologna, Pitagora Editrice. Belluzzi, O. (1966) Scienza delle Costruzioni, vol. 1 e 2, Bologna, Zanichelli. Di Tommaso, A. (1995) Fondamenti di Scienza delle Costruzioni, vol. 1, Bologna, Pàtron Editore. Di Tommaso, A. (2006) Fondamenti di Scienza delle Costruzioni, vol. 2 e 3, Bologna, Pàtron Editore. Viola, E. (1990) Scienza delle Costruzioni ,Vol. 1 - Teoria dell'elasticità, Bologna, Pitagora Editrice. Viola, E. (19923) Scienza delle Costruzioni, Vol. 3 - Teoria della trave, Bologna, Pitagora Editrice.
Slides; Libro di testo; Esercizi risolti;
Lecture slides; Text book; Exercise with solutions ;
E' possibile sostenere l’esame in anticipo rispetto all’acquisizione della frequenza
You can take this exam before attending the course
Modalità di esame: Prova scritta (in aula); Prova scritta in aula tramite PC con l'utilizzo della piattaforma di ateneo;
Exam: Written test; Computer-based written test in class using POLITO platform;
... L’esame consta di una prova scritta ed una orale. Prova scritta: La prova scritta ha lo scopo di valutare la capacità dello studente di applicare le tecniche di analisi viste a lezione ed esercitazione. Nella prova scritta (il tempo disponibile è di 2 ore e 20 minuti) viene richiesto di risolvere un esercizio relativo ad una struttura isostatica e un esercizio relativo ad una struttura iperstatica. Durante lo scritto non è possibile consultare testi o appunti; può essere utilizzato esclusivamente il formulario appositamente predisposto e disponibile online. La sufficienza allo scritto, conseguito con un voto pari a 18/30, costituisce condizione necessaria per accedere all’orale. Prova Orale: La prova orale viene svolta attraverso il test informatizzato. In alternativa, presentando richiesta al docente, è possibile sostenere la prova orale tradizionale. Il test informatizzato è composto di quesiti a risposta multipla chiusa, e quesiti a risposta aperta di tipo numerico. Il voto conseguito può essere integrato con un colloquio orale facoltativo (che permette di acquisire sino a due punti in più o in meno). Il colloquio è costituito da una domanda relativa ai contenuti teorici del corso. Per accedere al colloquio va inoltrata richiesta al docente via mail. La prova orale tradizionale consta, a seconda della loro complessità, di 2-4 domande. Le domande, sia del test che della prova orale, possono riguardare aspetti di tipo applicativo (eventualmente connessi all'esito della prova scritta), e aspetti di tipo teorico connessi a tutti gli argomenti del corso. Per quanto riguarda sia le domande di natura applicativa che quelle di natura teorica, l'aspetto principale che lo studente è chiamato ad evidenziare riguarda la chiara comprensione del fenomeno fisico in questione e la relativa impostazione di base della formulazione matematica utilizzata per la sua rappresentazione. Il superamento del test o dell’orale tradizionale viene conseguito con un voto pari a 18/30. Il mancato superamento richiede il rifacimento della prova scritta. Il voto finale è costituito dalla media del punteggio ottenuto allo scritto, e di quello ottenuto all'orale. È possibile presentare una o due relazioni relative ad attività proposte durante il corso (esercitazione pratica, calcolo di una struttura complessa) il cui punteggio (0-2 punti) incrementa il voto finale. Il voto della prova scritta, come pure il voto finale, può essere rifiutato. Il rifiuto del voto della prova scritta permette l’accesso alle prove scritte successive. Il rifiuto del voto finale comporta il rifacimento della prova scritta.
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Exam: Written test; Computer-based written test in class using POLITO platform;
L’esame consta di una prova scritta ed una orale. Prova scritta: La prova scritta ha lo scopo di valutare la capacità dello studente di applicare le tecniche di analisi viste a lezione ed esercitazione. Nella prova scritta (il tempo disponibile è di 2 ore e 20 minuti) viene richiesto di risolvere un esercizio relativo ad una struttura isostatica e un esercizio relativo ad una struttura iperstatica. Durante lo scritto non è possibile consultare testi o appunti; può essere utilizzato esclusivamente il formulario appositamente predisposto e disponibile online. La sufficienza allo scritto, conseguito con un voto pari a 18/30, costituisce condizione necessaria per accedere all’orale. Prova Orale: La prova orale viene svolta attraverso il test informatizzato. In alternativa, presentando richiesta al docente, è possibile sostenere la prova orale tradizionale. Il test informatizzato è composto di quesiti a risposta multipla chiusa, e quesiti a risposta aperta di tipo numerico. Il voto conseguito può essere integrato con un colloquio orale facoltativo (che permette di acquisire sino a due punti in più o in meno). Il colloquio è costituito da una domanda relativa ai contenuti teorici del corso. Per accedere al colloquio va inoltrata richiesta al docente via mail. La prova orale tradizionale consta, a seconda della loro complessità, di 2-4 domande. Le domande, sia del test che della prova orale, possono riguardare aspetti di tipo applicativo (eventualmente connessi all'esito della prova scritta), e aspetti di tipo teorico connessi a tutti gli argomenti del corso. Per quanto riguarda sia le domande di natura applicativa che quelle di natura teorica, l'aspetto principale che lo studente è chiamato ad evidenziare riguarda la chiara comprensione del fenomeno fisico in questione e la relativa impostazione di base della formulazione matematica utilizzata per la sua rappresentazione. Il superamento del test o dell’orale tradizionale viene conseguito con un voto pari a 18/30. Il mancato superamento richiede il rifacimento della prova scritta. Il voto finale è costituito dalla media del punteggio ottenuto allo scritto, e di quello ottenuto all'orale. È possibile presentare una o due relazioni relative ad attività proposte durante il corso (esercitazione pratica, calcolo di una struttura complessa) il cui punteggio (0-2 punti) incrementa il voto finale. Il voto della prova scritta, come pure il voto finale, può essere rifiutato. Il rifiuto del voto della prova scritta permette l’accesso alle prove scritte successive. Il rifiuto del voto finale comporta il rifacimento della prova scritta.
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.
Esporta Word