PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

Elenco notifiche



Analisi matematica II

23ACIOD

A.A. 2023/24

Lingua dell'insegnamento

Italiano

Corsi di studio

Corso di Laurea in Ingegneria Fisica - Torino

Organizzazione dell'insegnamento
Didattica Ore
Lezioni 50
Esercitazioni in aula 30
Docenti
Docente Qualifica Settore h.Lez h.Es h.Lab h.Tut Anni incarico
Morandotti Marco Professore Associato MATH-03/A 50 10 0 0 5
Collaboratori
Espandi

Didattica
SSD CFU Attivita' formative Ambiti disciplinari
MAT/05 8 A - Di base Matematica, informatica e statistica
2023/24
L’insegnamento di Analisi Matematica II completa la teoria delle funzioni di una variabile svolta nell’insegnamento di Analisi Matematica I, sviluppando i concetti di serie numerica, serie di potenze e serie di Fourier. Successivamente vengono presentati gli argomenti di base dell’analisi delle funzioni di più variabili: il calcolo differenziale per le funzioni di più variabili e le sue applicazioni, l’integrazione multipla, curvilinea e di superficie. Si concluderà il corso con alcuni cenni di analisi funzionale.
This course completes the theory of functions of one variable which was developed in Mathematical Analysis I, presenting the basic concepts of numerical series, power series, and Fourier series. Then the course presents the basic topics in the mathematical analysis of functions of several variables: differential calculus in several variables, the theory of multiple integration, line, and surface integration. The course will close with some notions of functional analysis.
Comprensione degli argomenti trattati e abilità di calcolo nell’utilizzo dei relativi strumenti matematici introdotti. Capacità di riconoscere ed utilizzare adeguati strumenti matematici nelle discipline ingegneristiche. Capacità di costruire un percorso logico, utilizzando gli strumenti introdotti.
Gli argomenti trattati negli insegnamenti di Analisi Matematica I e di Algebra Lineare e Geometria. In particolare, limiti, successioni, calcolo differenziale e integrale per funzioni di una variabile, algebra lineare, geometria delle curve.
Richiami sui vettori. Cenni di topologia dello spazio Euclideo n-dimensionale. Funzioni di più variabili, campi vettoriali. Limiti e continuità. (0,75 CFU) Derivate parziali e direzionali, matrice jacobiana. Differenziabilità, gradiente e piano tangente al grafico. Derivate seconde, matrice hessiana. Polinomio di Taylor. (1,5 CFU) Punti critici, massimi e minimi liberi. (1 CFU) Integrali doppi e tripli; applicazioni. Lunghezza di una curva e area di una superficie. Integrali curvilinei e di superficie, circuitazione e flusso di un campo vettoriale. Campi conservativi. Teoremi di Green, della divergenza (Gauss) e del rotore (Stokes). (1,5 CFU) Definizioni e criteri di convergenza per le serie numeriche. (1 CFU) Successioni di funzioni. Serie di potenze. Serie di Fourier. (1,5 CFU) Cenni di analisi funzionale (0,75 CFU)
Il corso consiste di 50 ore di lezione e 30 di esercitazione. Le lezioni sono dedicate alla presentazione degli argomenti del programma del corso con definizioni, proprietà ed alcune dimostrazioni ritenute utili per una migliore comprensione degli argomenti e per fornire gli strumenti necessari per sviluppare capacità di ragionamento logico-deduttivo da parte dello studente. Ogni argomento teorico trattato nelle lezioni viene arricchito da esempi introduttivi. Le ore di esercitazione sono dedicate allo svolgimento di esercizi e di temi d’esame, allo scopo principale di preparare lo studente per affrontare la prova d'esame.
Note del docente. I testi consigliati saranno comunicati a lezione dal docente titolare dell’insegnamento tra quelli elencati: - T. Apostol, "Calcolo, volume terzo (Analisi 2)", Bollati Boringhieri. - M. Bramanti, C.D. Pagani, S. Salsa, “Analisi matematica 2”, Zanichelli. - C. Canuto, A. Tabacco, "Analisi Matematica II", Springer. - S. Salsa, A. Squellati, “Esercizi di Analisi matematica 2”, Zanichelli. - S. Lancelotti, “Esercizi e quiz di Analisi Matematica II”, Celid. - D. Bazzanella, P. Boieri, L. Caire, A. Tabacco, Serie di funzioni e trasformate, CLUT. Ulteriore materiale sarà reso disponibile sul Portale della Didattica.
Dispense; Libro di testo; Esercizi; Esercizi risolti;
E' possibile sostenere l’esame in anticipo rispetto all’acquisizione della frequenza
Modalità di esame: Prova scritta (in aula); Prova orale obbligatoria;
Exam: Written test; Compulsory oral exam;
... L’esame è volto ad accertare la conoscenza degli argomenti elencati nel programma ufficiale del corso e la capacità di applicare la teoria ed i relativi metodi di calcolo alla soluzione di esercizi. Le valutazioni sono espresse in trentesimi e l’esame è superato se la votazione riportata è di almeno 18/30. L'esame consiste in una prova scritta e in una prova orale. La prova scritta consiste di 8 esercizi a risposta chiusa e di un esercizio a risposta aperta sugli argomenti contenuti nel programma del corso ed ha lo scopo di verificare il livello di conoscenza e di comprensione degli argomenti trattati. L’esame si pone l’obiettivo di verificare le competenze di cui sopra (cfr. Risultati dell’apprendimento attesi): l'esame, infatti, comprende esercizi di calcolo che richiedono la necessità di scegliere ed applicare lo strumento matematico più adeguato per la sua risoluzione, ma anche quesiti di tipo teorico, che richiedono la capacità, da parte dello studente, di costruire un concatenamento logico applicando in sequenza risultati teorici visti a lezione. La durata della prova scritta è di 100 minuti. Ciascun esercizio a risposta chiusa vale: 3 punti se giusto, 0 punti se senza risposta, -1 punto se sbagliato. L'esercizio a risposta aperta vale 6 punti. Durante lo svolgimento della prova scritta non è consentito tenere e consultare quaderni, libri, fogli con esercizi, formulari, calcolatrici o altri strumenti elettronici. Gli studenti possono visionare la prova scritta e chiedere chiarimenti in occasione della prova orale; i risultati dell’esame vengono comunicati sul portale della didattica.
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Esporta Word