Corso di Laurea in Ingegneria Meccanica - Torino Corso di Laurea in Ingegneria Meccanica (Mechanical Engineering) - Torino Corso di Laurea in Ingegneria Informatica (Computer Engineering) - Torino Corso di Laurea in Electronic And Communications Engineering (Ingegneria Elettronica E Delle Comunicazioni) - Torino Corso di Laurea in Ingegneria Dei Materiali - Torino Corso di Laurea in Ingegneria Elettrica - Torino Corso di Laurea in Ingegneria Aerospaziale - Torino Corso di Laurea in Ingegneria Biomedica - Torino Corso di Laurea in Ingegneria Civile - Torino Corso di Laurea in Ingegneria Edile - Torino Corso di Laurea in Ingegneria Energetica - Torino Corso di Laurea in Ingegneria Per L'Ambiente E Il Territorio - Torino Corso di Laurea in Matematica Per L'Ingegneria - Torino Corso di Laurea in Ingegneria Elettronica - Torino Corso di Laurea in Ingegneria Informatica - Torino Corso di Laurea in Ingegneria Fisica - Torino Corso di Laurea in Ingegneria Del Cinema E Dei Mezzi Di Comunicazione - Torino Corso di Laurea in Ingegneria Gestionale - Torino Corso di Laurea in Ingegneria Gestionale - Torino Corso di Laurea in Civil And Environmental Engineering - Torino
L’insegnamento si propone di fornire agli allievi le conoscenze di base riguardanti la dinamica di un autoveicolo, con particolare riferimento alle principali prestazioni in termini di trazione e frenata, consumo energetico, comportamento direzionale e comfort. Sono oggetto di studio i sottosistemi principali dell'autotelaio (pneumatici, sospensioni, freni, sterzo e trasmissione, appendici aerodinamiche) di cui saranno analizzati in dettaglio: funzioni, soluzioni architetturali e costruttive più diffuse e saranno introdotte le metodologie per il loro progetto funzionale e l'analisi del loro effetto sul comportamento dinamico del veicolo (handling e comfort). Saranno inoltre introdotte le architetture elettriche, ibride e a fuel cell. Cenni sui sistemi attivi (ABS, ESP, TCS, Frenata rigenerativa,..).
The course aims to provide students basic knowledge regarding the vehicle dynamics, with particular reference to the main performance in terms of traction and braking, energy consumption, directional behaviour and comfort. The main subsystems of the chassis are presented (tires, suspensions, brakes, steering and transmission, aerodynamic appendages) of which they will be analysed in detail: functions, most widespread architectural and construction solutions and the methodologies for their functional design and the analysis of their effect on the dynamic behaviour of the vehicle (handling and comfort). Electric, hybrid and fuel cell architectures will also be introduced. Notes on active systems (ABS, ESP, TCS, Regenerative braking,..).
Conoscenza della dinamica longitudinale e laterale dell’autoveicolo e dei suoi principali componenti: pneumatici, freni, sospensioni, sterzo e trasmissione.
Capacità di:
- eseguire calcoli previsionali delle prestazioni dinamiche dell’autoveicolo;
- prevedere il comportamento dinamico qualitativo di un autoveicolo in relazione alla sua architettura e all’impostazione/taratura di un suo sottosistema.
Al termine del corso lo studente dovrà avere acquisito le seguenti competenze, relative ai sottosistemi del veicolo:
- Costruzione dello pneumatico, comportamento longitudinale, laterale e combinato, resistenza al rotolamento.
- Architetture powertrain, principali caratteristiche prestazionali e di consumo di carburante
- Architettura e componenti del sistema frenanti, ripartizione della frenata.
- Architettura dei sistemi di trasmissione.
- Cinematica e componenti del sistema di sterzo e del sistema sospensione.
- Criteri di dimensionamento e scelta powertrain elettrici e ibridi.
- Modellazione del comportamento dinamico verticale delle sospensioni con approccio semplificato (quarter car model).
- Modellazione e calcolo delle prestazioni longitudinali veicolo (velocità massima, consumo di carburante, risposta in accelerazione, in regime e in frenata)
- Modellazione del comportamento dinamico laterale della vettura (accelerazione massima, angolo di rollio, trasferimento di carico, under/oversteering)
• Knowledge of longitudinal and lateral dynamics of a motor vehicle and its basic components: tires, brakes, suspension, steering and transmission.
• Ability to:
- performing calculations about the dynamic performance of the vehicle;
- predicting the trend of the dynamic behaviour of a vehicle in relation to its architecture and to the setting / calibration of a subsystem.
Sono richieste conoscenze acquisite nell'ambito di: Analisi I, Fisica I, Meccanica applicata alle macchine, Disegno Meccanico, Scienza e Tecnologia del materiali.
It is assumed that students attending this course already have basic knowledge and understanding of theoretical and applied mechanics, technical drawing and of fundamentals of differential and integral calculus.
Forze e momenti agenti su un veicolo, forze di contatto pneumatico-strada, forze e momenti aerodinamici.
Prestazioni longitudinali del veicolo, distribuzione dei carichi al suolo e trasferimento del carico, potenza richiesta per il movimento, potenza disponibile, scelta di i rapporti di trasmissione, le prestazioni massime (velocità, accelerazione, pendenza superabile); consumo di carburante, frenata e distribuzione della potenza frenante sulle ruote.
Dinamica laterale del veicolo. Sterzo cinematico e modelli di base. Comportamento di sotto e sovrasterzo, influenza del vento trasversale.
Sottosistemi del veicolo. Analisi funzionale e dettagli costruttivi dei più comuni sottosistemi veicolari (sospensioni, ammortizzatori, sistema di sterzo, sistema frenante,..) e loro comportamenti cinematici.
Architetture e componenti per trazione anteriore, posteriore, integrale.
Architetture e componenti per un veicolo elettrico, ibrido e a fuel cell.
Architetture telaio, metodologie di progettazione e nuovi materiali.
Cenni sui sistemi attivi, loro componenti e logiche di controllo: ABS, TCS, ESP, Frenata rigenerativa.
- The vehicle: definition, reference systems, degrees of freedom, characteristic quantities.
- Tire mechanics
Limits of the Coulomb friction model in tire-road contact, hypothesis of flexible wheel on rigid ground. Effect of tire stiffness, inflation pressure and vertical load on contact patch dimension and average pressure. Structure of a tire and manufacturing process.
Brush model in conditions of simple longitudinal and lateral slip: stress distribution in the contact footprint, trends of the ground forces and of the self-aligning moment and sensitivity to the vertical load and the wheel-road friction coefficient. Steering axis position and its effects on straight driving stability and on sensitivity to the limit adhesion condition. Linearized behavior: dependence of cornering stiffness and longitudinal slip stiffness on vertical load. Cornering stiffness of an axle. Combined slip and interaction between longitudinal and lateral force. Empirical models, ply steer and conicity. Losses in a pneumatic tire: drift losses, slip losses and hysteresis.
- Longitudinal dynamics of the vehicle
Estimation of the center of gravity position (longitudinal and vertical) with dedicated experimental tests.
Traction: motion equations, vertical loads and load transfers, resistances to the motion of a vehicle at constant speed. Estimation of the loss coefficients by coast-down test. Power available from the powertrain and inertial power. Kinetic energy and translating apparent mass of a vehicle.
Electric motors (operating quadrants, efficiency) and thermal engines for motor vehicles (specific consumption maps, efficiency, E-line, fuel consumption calculation).
Transmission: components for a 2WD vehicle. Why a gearbox? Ideal traction hyperbola and characteristic traction force on the wheels for stepped and stepless transmission. Range of transmission ratios typical for automotive gearbox: example of a 6-speed DCT and 8-speed AT. Classification of transmissions, schemes and constructional drawing (MT, DCT, AT, CVT).
Maximum slope that can be overcome by a vehicle equipped with different drivetrain layouts: FWD,
RWD, ideal AWD, fixed torque distribution AWD. Optimized torque distribution ratio for a given grip condition. Effect of adherence conditions and torque distribution factor on performance.
Epicyclic gears and their use as differentials between wheels and axles.
Performance: acceleration, elasticity, gear ratio to maximize acceleration.
Criteria for the selection of the minimum and maximum transmission ratios and of the intermediate ratios of a gearbox: geometric and progressive ratio selection (theory and numerical exercise).
- Braking mechanics
Dynamic loads under braking. Ideal braking and braking with wheels locking on a single axle. Constant deceleration curves. Real braking with fixed brake force distribution. Braking efficiency. Graphic check of axle locking when the vehicle loading and grip change. Fixed distribution between the braking forces of the two axles: friction utilization and braking efficiency. Brake system design specifications. Braking correctors (pressure reducing valve, with fixed and variable calibration), EBD. Verifications required by ECE 13 regulations. Stopping time and distance of a vehicle. Approval limits for service and emergency braking. Components of a passive hydraulic braking system: brake booster and tandem master cylinder. Characteristic curve pressure-Force. Brake boost gain. Effect of the degree of vacuum on p-F, F-stroke characteristics. Response delay and speed of manoeuvre execution: Emergency Valve Assist, Hydraulic Brake Assist. Active systems that act on the brakes: ABS (layout, low and high level control logic).
- Lateral dynamics of a vehicle
Kinematic and dynamic steering. Bicycle model: kinematic and dynamic analysis of steady-state motion during cornering. Understeer and sideslip angle equation and related gradients.
Linear lateral dynamics: steady-state cornering response for understeering, neutral and oversteering vehicles; gains of curvature, yaw rate, lateral acceleration and sideslip angle; critical speed, instability and balance in counter-steering.
Nonlinear lateral dynamics: axle nonlinearity effect; understeer characteristic and real vehicle attitude; sensitivity to the driving torque, load transfers and setting of the anti-roll bars.
Il corso non è inseribile dagli studenti di ingegneria dell'autoveicolo causa sovrapposizione con corso obbligatorio di Motor Vehicle Design.
Il corso non è inseribile dagli studenti di ingegneria dell'autoveicolo causa sovrapposizione con corso obbligatorio di Motor Vehicle Design.
Le 60 ore saranno suddivise, in base alla numerosità del corso, tra lezioni in aula ed esercitazioni in aula/laboratorio/laib.
Gli argomenti teorici presentati durante le lezioni sono accompagnati da esempi e applicazioni.
Le esercitazioni permettono allo studente di verificare la comprensione degli argomenti trattati a lezione e di implementare le tecniche di calcolo proposte. In relazione alla numerosità del corso potranno essere effettuate esercitazioni di laboratorio/laib, in cui agli allievi è richiesto di impostare la soluzione dei problemi proposti attraverso l’utilizzo di software.
Potranno essere previsti interventi di aziende/esperti per alcuni degli argomenti trattati a lezione in modo da presentare allo studente le metodologie utilizzare in ambito automotive reale/pratico.
Credits 6: 60 classroom hours (48 lecture hours, 6 tutorial hours and 6 computer lab).
Theoretical lectures are supported by examples and applications. During specific tutorials, students are required to apply knowledge to working context problems. The tutor will provide materials and frames for solutions. However, students are asked to interact with each other and with the tutor, especially when setting the solution. The tutor will assist students during the tutorial class hours, supporting students in their learning progression and clarifying their doubts.
Attendance to both lectures and tutorials is strongly recommended, being vital to achieve the expected learning outcomes.
The teacher and the tutor are available weekly during the teaching period in order to meet students for consultation; please contact them by e-mail.
- Testi di riferimento
M. Guiggiani. "Dinamica del veicolo". Città Studi.
G. Genta. "Meccanica dell’autoveicolo". Levrotto & Bella.
Lorenzo Morello, Lorenzo Rosti Rossini, Giuseppe Pia, Andrea Tonoli. "The Automotive Body", vol. 1 e 2. Springer-Verlag GmbH
G. Genta, L. Morello. "The Automotive Chassis". Volume 1: Components Design. Springer-Verlag GmbH.
Milliken W. F., Milliken D. L., Race Car Vehicle Dynamics, SAE International.
Saranno fornite dispense su specifici argomenti e altro materiale didattico (immagini, schemi) durante lo svolgimento dell’insegnamento e consultabili attraverso il portale della didattica.
Suggested readings
M. Guiggiani, The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars, Springer.
G. Genta, L. Morello, The Automotive Chassis Volume 2: System Design
Further readings
G. Genta, L. Morello, The Automotive Chassis Volume 1: Components Design, Springer.
Naunheimer, H., Bertsche, B., Ryborz, J., Novak, W., Automotive Transmissions, Fundamentals, Selection, Design and Application, Springer.
Lectures notes on specific topics, exercises and other material are available on the subject page.
Tutorials: texts of problems and Matlab/Simscape codes are provided on the course website before the lectures.
Dispense;
Lecture notes;
Modalità di esame: Prova scritta (in aula); Prova orale facoltativa; Elaborato progettuale individuale;
Exam: Written test; Optional oral exam; Individual project;
...
L’esame è costituito da:
- una parte scritta costituita da domande a risposta multipla e da domande a risposta aperta. La sua valutazione massima è pari a 30/30.
- una tesina obbligatoria sulla parte di laboratorio da svolgersi singolarmente o a coppie di studenti e da consegnare entro la settimana successiva al termine del corso.
La valutazione della tesina consentirà di aggiungere al massimo 3 punti al risultato ottenuto con la parte scritta.
Se la tesina non verrà consegnata nei tempi previsti, al risultato della parte scritta, saranno sottratti 3 punti per costituire il voto finale dell'esame.
L'esame orale aggiuntivo è facoltativo ed è possibile solo se si ottiene una valutazione minima della parte scritta pari a 21/30.
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Exam: Written test; Optional oral exam; Individual project;
The examination consists of a written test, duration 1 h 30 min, closed book, composed of three questions, each related to a different topic covered during the course. The single question can be and open question or could require the solution of an exercise.
The exam aims at evaluating the understanding of the topics covered during the course and the ability to apply tools and methods appropriate for the analysis, prediction and modeling of the dynamic behavior of a vehicle.
The maximum mark is 30/30 with merit (cum laude).
Usually, a few days after the written test, students are called for a review of their papers, in which examiners inform the students on grading criteria, and they can report any problems with the interpretation of the document.
Computers, telephones and any printed documentation are not allowed during the written test. Further details on exam rules are reported on the official page of the course on the teaching portal.
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.