Il corso č inteso fornire una panoramica di vari approcci computazionali utili in diversi ambiti dell’ottica, ovvero: (1) la progettazione di dispositivi fotonici passivi e attivi, (2) olografia digitale e display 3D, (3) formazione di immagine lens-less e ricostruzione di oggetti a partire dalla rilevazione di intensitŕ in campo lontano. Durante le lezioni, verranno proposti tutorial pratici, che includono sessioni di programmazione.
The course will provide an overview of several computational approaches for tackling different tasks in optics, namely: (1) design of passive and active photonic devices, (2) hologram 3D display, (3) lens-less imaging and object reconstruction from far field intensity detection. During the lectures, practical tutorials are proposed, including coding sessions.
Elettromagnetismo classico
Classical electromagnetism
-Metodi nel dominio delle frequenze: Transfer Matrix method (applicazione a multistrati dielettrici, plasmoni di superficie, effetti di strong-coupling in materiali 2D). Emettitori integrati in mezzi planari stratificati: accoppiamento da campo vicino a campo lontano. Fourier Modal Method (RCWA e C-method) per interfacce stratificate corrugate in modo periodico ed aperiodico (applicazione ad accoppiatori direzionali, reticoli blazed –triangolari- etc.). Progettazione di elementi ottici diffrattici (DOE), ad esempio lensi diffrattive di Fresnel. Boundary Element Method (applicazione a diffusori isolate, ad esempio nanoparticelle plasmoniche).
-Metodi nel dominio del tempo: Finite Difference Time Domain (FDTD).
- Computer-Generated Holograms ed elementi di fase programmabili per display olografici in 3D.
Letture consigliate
- J.-P. Hugonin, P. Lalanne, “RETICOLO software for grating analysis”, arXiv:2101.00901v1
L. Li, J. Chandezon, G. Granet, J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers”, Applied Optics 38, pp 304-313 (1999).
- V.A. Soifer, “Computer Design of Diffractive Optics”, Woodhead Publishing (2013).
- L. C. Wrobel and M. Aliabadi, “The Boundary Element Method”, Wiley, New York (2002).
- D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, ‘Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,’’ J. Opt. Soc. Am. A 15, 1599–1607 (1998).
- A. Palevicius, B. Narijauskaite, G. Janušas, “Generation and Replication of Computer Generated Hologram”, Proceedings of WCECS 2012, Vol I, San Francisco, USA.
- P. Wai, “Computer-generated Phase-Only Holograms for 3D displays: a Matlab approach”, Cambridge University Press (2021).
- Frequency-domain. Transfer Matrix method (applications to dielectric multilayers, Surface Plasmons, strong-coupling effects in 2D materials). Emitters embedded in stacked planar media: near-to-farfield coupling. Fourier Modal Method (RCWA and C-method) for periodical and aperiodical corrugated stacked interfaces (applications to directional couplers, blazed gratings, etc.). Design of diffractive optical elements (DOE) e.g. Diffractive Fresnel lenses. Boundary Element Method (application to individual scatterers, e.g. plasmonic nanoparticles).
- Time domain: Finite Difference Time Domain (FDTD).
- Computer-Generated Holograms and phase-only programmable elements for 3D display.
Useful readings
- J.-P. Hugonin, P. Lalanne, “RETICOLO software for grating analysis”, arXiv:2101.00901v1
L. Li, J. Chandezon, G. Granet, J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers”, Applied Optics 38, pp 304-313 (1999).
- V.A. Soifer, “Computer Design of Diffractive Optics”, Woodhead Publishing (2013).
- L. C. Wrobel and M. Aliabadi, “The Boundary Element Method”, Wiley, New York (2002).
- D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, ‘Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,’’ J. Opt. Soc. Am. A 15, 1599–1607 (1998).
- A. Palevicius, B. Narijauskaite, G. Janušas, “Generation and Replication of Computer Generated Hologram”, Proceedings of WCECS 2012, Vol I, San Francisco, USA.
- P. Wai, “Computer-generated Phase-Only Holograms for 3D displays: a Matlab approach”, Cambridge University Press (2021).