PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

Elenco notifiche



Optimization methods and algorithms

01OUVOV, 01OUVUV, 01OUVUW

A.A. 2024/25

Course Language

Inglese

Degree programme(s)

Master of science-level of the Bologna process in Ingegneria Informatica (Computer Engineering) - Torino
Master of science-level of the Bologna process in Cybersecurity - Torino
Master of science-level of the Bologna process in Cybersecurity - Torino

Course structure
Teaching Hours
Lezioni 40
Esercitazioni in aula 20
Lecturers
Teacher Status SSD h.Les h.Ex h.Lab h.Tut Years teaching
Volta Giuseppe   Docente esterno e/o collaboratore   40 20 0 0 2
Co-lectures
Espandi

Context
SSD CFU Activities Area context
MAT/09 6 C - Affini o integrative Attività formative affini o integrative
2023/24
The course aims to provide students with theoretical and operational tools to model and solve decision making and optimization problems in computer science science and engineering. Those tools are powerful mathematical methods (models, algorithms, and software) able to solve complex problems, which concern the minimization (or maximization) of objective functions, subject to given constraints. Stemming from real-life optimization problems, we will study suitable methods and algorithms for their solution. Particular attention will be devoted to the computational complexity analysis of the considered problems and algorithms.
Expected knowledge: Students will study methods and algorithms for solving constrained optimization problems. They will learn how to use existing continuous and integer mathematical programming solution methods. We will give particular attention to optimization on graphs. The computational complexity of optimization problems, which affects the choice of suitable solution algorithms, will be studied. The considered solution methods are both exact (e.g. Branch and Bound, Dynamic Programming) and heuristic (constructive approaches; metaheuristics such as tabu search, simulated annealing, variable neighborhood search and others; matheuristics). Expected skills: Students are expected to develop a problem solving mindset and skills in mastering mathematical models and related algorithms for the solution of decision making and optimization problems.
None
1. Linear programming: modeling techniques, basic properties of continuous linear programming and the Simplex Method. 2. Computational complexity: polynomial time algorithms, computational complexity classes and the P vs NP question, polynomial time reductions. 3. Exact optimization methods: Branch and Bound, Dynamic Programming. 4. Heuristic optimization methods: greedy algorithms, GRASP, Beam Search, metaheuristics (Tabu Search, Simulated Annealing, Genetic Algorithms, VNS, RBS), matheuristics. 5. Multiobjective optimization: non dominated solutions, goal programming, epsilon-constrained approach.
The course foresees teaching and exercises classes. Typically an exercise class is foreseen every two teaching classes. In the last week a mockup test is foreseen to allow the students a self-evaluation of their competences on the course topics.
Slides and other learning material provided by the instructor. Below a list of relevant books on the course topics. R.K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows, Prentice-Hall, New Jersey, 1993. D. J. Luenberger, Linear and Nonlinear Programming, Springer, 3rd ed., 2008. G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, Wiley, 1999. G. Ausiello, A. Marchetti-Spaccamela, P. Crescenzi, G. Gambosi,M. Protasi, V. Kann, Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, Springer, 2003, 2nd edition.
Lecture slides; Exercises; Exercise with solutions ; Video lectures (previous years); Multimedia materials;
You can take this exam before attending the course
Exam: Written test;
The assessment is composed of a written test. The students will have to answer to 5-6 theoretical and practical questions concerning specific topics of the whole program. The candidate's competences will be assessed with respect to the following objectives (consistently with the expected learning outcomes): - knowledge of the optimization modeling techniques; - capability in deriving the main optimization algorithms. The written test lasts approximately 1.5 hours. During the written test it will not be possible to consult texts, lecture notes and forms. Multimedia devices with access to the web (e.g., smartphones, smartwatches, and tablets) are not allowed in the classroom. The outcome of the written test will be communicated to the students through a notice on the course website. Students can view their written test and its assessment during a general meeting. The exam is passed in case of a mark greater than or equal to 18/30 and the honors will be awarded to outstanding written tests.
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.
Esporta Word