Master of science-level of the Bologna process in Ingegneria Informatica (Computer Engineering) - Torino 1st degree and Bachelor-level of the Bologna process in Electronic And Communications Engineering (Ingegneria Elettronica E Delle Comunicazioni) - Torino Master of science-level of the Bologna process in Mechatronic Engineering (Ingegneria Meccatronica) - Torino
The course is taught in English.
The course provides tools for analysis and design of digital control systems. Both standard and advanced digital control design methodologies and architectures are introduced.
The course is taught in English.
The course provides tools for analysis and design of digital control systems. Both standard and advanced digital control design methodologies and architectures are introduced.
By the end of this course, students will gain the following knowledge and skill:
- Skill in analyzing the dynamics of discrete-time, sampled-data, digital systems by means of models in the discrete-time and/or frequency domains.
- Knowledge of the digital control system requirements.
- Knowledge of the basic digital control approaches and of the related design methodologies.
- Skill in designing digital controller through basic methodologies.
- Knowledge of the main technological and numeric problems in the sampled-data control systems.
- Knowledge of advanced digital control methodologies such as adaptive control and model predictive control.
- Skill in designing digital control systems by means of adaptive control and model predictive control techniques.
- Skill in evaluating control performance by numerical simulation.
By the end of this course, students will gain the following knowledge and skill:
- Skill in analyzing the dynamics of discrete-time, sampled-data, digital systems by means of models in the discrete-time domain.
- Knowledge of the digital control system requirements.
- Knowledge of the basic digital control approaches and of the related design methodologies.
- Skill in designing digital controller through basic methodologies.
- Knowledge of model predictive control control methodologies.
- Skill in designing digital control systems by means of model predictive control techniques.
- Skill in evaluating control performance by numerical simulation.
Knowledge of basic concepts on linear Idynamic systems such as state space and transfer function representations and stability. Knowledge of basic concepts on feedback control systems analysis and design. Skill in designing basic control devices through both time domain (e.g. state feedback) and frequency domain (e.g. loopshaping) approaches. Knowledge of signal and sampling theory fundamentals. Basic skill of Matlab and Simulink.
Basic skill of MatLab and Simulink. Knowledge of basic concepts on linear dynamic systems such as state space and transfer function representations and stability. Knowledge of basic concepts on feedback control systems analysis and design. Skill in designing basic control devices through both time domain (e.g. state feedback) and frequency domain (e.g. loopshaping) approaches. Knowledge of signal and sampling theory fundamentals.
- Analysis of discrete time, sampled data and digital systems (15 hr)
- Control requirements, structures and architectures of digital control systems (6 hr)
- Digital controller design through analytic approaches (15 hr)
- Realization of digital controllers (3 hr)
- Adaptive control fundamentals (6 hr)
- Model Predictive Control fundamentals(15 hr)
- Analysis of discrete time, sampled data and digital systems (13 hr).
- Control requirements, structures and architectures of digital control systems (5 hr).
- Digital controller design through analytic approaches (15 hr).
- Model Predictive Control fundamentals (14 hr).
- Model Predictive Control solution and implementation through quadratic programming optimization (13 hr).
Theoretical and methodological lessons will be delivered together with example developments by face-to-face instruction in the classroom. Computer laboratory activities are aimed at developing the student’s skill through proper training. Each student is supposed to practice individually with the aid of laboratory work stations. The primary purpose of the laboratory exercises is to apply the methodologies presented in class, through the use of MatLab and Simulink. During the last week of the course, an exam simulation in the laboratory will be offered.
Theoretical and methodological lessons will be delivered together with example developments by face-to-face instruction in the classroom. Computer laboratory activities are aimed at developing the student’s skill through proper training. Each student is supposed to practice individually with the aid of laboratory work stations. The primary purpose of the laboratory exercises is to apply the methodologies presented in class, through the use of MatLab and Simulink. During the last week of the course, an exam simulation in the laboratory will be offered.
The main reference textbooks are:
(1) K.J. Åström, B. Wittenmark, 'Computer-controlled systems', Prentice-Hall, 1997.
(2) G.F. Franklin, J.D. Franklin and M. Workman, Digital control of dynamic systems, Addison Wesley,1997.
(3) K.J. Åström, B. Wittenmark, 'Adaptive control', Addison-Wesley, 1995.
(4) J.B. Rawlings, D.Q. Mayne, Model Predictive Control: Theory and Design, Nob-Hill Publishing, 2009.
(5) F. Borrelli, A Bemporad, M. Morari, Predictive Control for Linear and Hybrid systems, Cambridge University Press, 2017.
Lecture slides will be available on “Portale della didattica” as well as laboratory practice handouts.
The main reference textbooks are:
(1) K.J. Åström, B. Wittenmark, 'Computer-controlled systems', Prentice-Hall, 1997.
(2) G.F. Franklin, J.D. Franklin and M. Workman, Digital control of dynamic systems, Addison Wesley,1997.
(3) F. Borrelli, A Bemporad, M. Morari, Predictive Control for Linear and Hybrid systems, Cambridge University Press, 2017.
Slides; Esercitazioni di laboratorio;
Lecture slides; Lab exercises;
E' possibile sostenere l’esame in anticipo rispetto all’acquisizione della frequenza
You can take this exam before attending the course
Modalità di esame: Test informatizzato in laboratorio;
Exam: Computer lab-based test;
...
Written exam in computer laboratory lasting 3 hours divided into three parts.
Part I. 2 multiple choice problems for each 4 possible answers are shown, only one of which is correct (maximum score: 6/30). Exact answer: 3 points, wrong answer: -1 point, missing answer: 0 points. Comments on the solution must be provided too: in the absence of any comments a null score is given even in the presence of the correct answer. The goal of this first part of the exam is to verify the understanding of the fundamental theoretical topics of digital control systems.
Part II. 1 “open” question on conceptual topics (maximum score: 10/30). The goal of this part of the exam is to verify the student ability to properly express and elaborate either theoretical issues or conceptual problems.
Part III. 1 digital control design problem (maximum score: 17/30). The goal of this part of the exam is to verify the student skinless in designing a digital control system. A well motivated detailed report on the employed design procedure is required.
The final grade is the sum of the scores achieved in the three parts.
During the exam it is allowed to use a formulary provided by the instructor.
Detailed instructions and rules will be presented during the course.
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Exam: Computer lab-based test;
Written exam in computer laboratory lasting 2:15 hours divided into two parts.
Part I. Up to a maximum of 6 theoretical and practical topics exercises (maximum score: 16/30). The goal of this part of the exam is to verify the understanding of the fundamental topics of analysis and design of digital feedback control systems. The student know-how is verified through questions proposed by means of the Moodle exam platform, in the form of, e.g., multiple-choice, numerical response questions to be solved by the candidate.
Part II. Up to a maximum of 2 digital control design problems (maximum score: 17/30). The goal of this part is to verify the students’ skills in designing a digital feedback control system using different approaches, i.e., algebraic methods and/or Model Predictive Control procedures. Evidence of the design procedure must be provided in terms of the MatLab files developed for the design, a text document can be asked to provide further proof of the design development.
The final grade is the sum of the scores achieved in the two parts. A mark of 30L/30 is given if the final score is greater or equal than 33.
During the exam it is allowed to use a formulary provided by the instructor.
The exam is given in LaIB using the exam platform.
The course instructor reserves the right to perform an oral examination in specific cases at her/his exclusive discretion.
Detailed instructions and rules will be presented during the course.
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.