PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

Elenco notifiche



Image Processing and Computer vision

01TUJOV, 01TUJPD

A.A. 2024/25

Course Language

Inglese

Degree programme(s)

Master of science-level of the Bologna process in Ingegneria Informatica (Computer Engineering) - Torino
Master of science-level of the Bologna process in Ingegneria Del Cinema E Dei Mezzi Di Comunicazione - Torino

Course structure
Teaching Hours
Lezioni 40
Esercitazioni in laboratorio 20
Lecturers
Teacher Status SSD h.Les h.Ex h.Lab h.Tut Years teaching
Montrucchio Bartolomeo Professore Ordinario IINF-05/A 40 0 0 0 7
Co-lectures
Espandi

Context
SSD CFU Activities Area context
ING-INF/05 6 C - Affini o integrative Attività formative affini o integrative
2024/25
The course is taught in Italian. Image capture, processing and understanding are required for many practical applications. In particular, Computer Vision refers to computing properties of the 3D world from 2D images. Among main applications, we quote industrial inspection, surveillance, biometric identification, human body motion capture for entertainment, medicine or sport performance enhancement, satellite and UAV images analysis, 3D scanning, and robotic navigation. The course will provide the elements of the most used image processing and analysis techniques, and will illustrate some popular application.
The course will supply the main elements about: - Sensor and optical systems - Optical systems' models and transfer functions - Frequency analysis of images - Enhancement and reconstruction of images corrupted by noise, motion blur, atmospheric turbulence, etc. - Techniques for image segmentation and feature extraction - 2D and 3D objects recognition - Motion analysis Using this knowledge, and based on several examples, the student should be able to design image analysis and computer vision applications.
Basics of analysis, 1D signal processing, linear algebra, probability theory.
Main topics. - Imaging systems (1 cr) - Image processing. 2D transforms and transfer function(1,0 cr) - Image enhancement and image restoration (0.5 cr) - Image segmentation and feature extraction (0.5 cr) - 2D and 3D object recognition (1 cr) - Motion analysis(0.5 cr) - Case studies(1.5 cr)
I gruppi per il lavoro obbligatorio saranno composti da una a tre persone.
The laboratory sessions will build on the material covered in the class, and aim to solidify your understanding of concepts through hands-on experimentation. Project will be assigned individually or to small groups. The results will be evaluated and will contribute to the final mark.
Course transparencies and other material at http://didattica.polito.it Suggested textbooks: - R.C. Gonzales and R.E. Woods: Digital Image Processing, Pearson International Edition, 2008 - C. Steger, M. Ulrich, C. Wiedermann: Machine Vision Algorithms and Applications, Wiley-VCH, 2008 - G.C. Holst and T.S. Lomheim: CMOS/CCD Sensors and Camera Systems, SPIE Press, 2007 - E.R. Davies, Machine Vision: Elsevier, 2005
Lecture slides; Text book; Video lectures (previous years); Multimedia materials;
You can take this exam before attending the course
Exam: Written test; Optional oral exam; Group project;
L'esame si compone di una prova scritta della durata indicativa di 80 minuti, nella quale sarà richiesto di rispondere ad una serie di domande, normalmente 5. A discrezione del docente può inoltre svolgersi una prova orale, integrativa o sostitutiva. È necessario prenotarsi all'esame e presentarsi muniti di un documento d'identità. Durante l'esame non è possibile usare computer, telefonini o smartphone, oppure consultare libri e appunti. È inoltre previsto che venga svolto un lavoro obbligatorio, individuale o di gruppo, volto a realizzare un'applicazione grafica sfruttando le nozioni acquisite durante le esercitazioni di laboratorio. La correttezza delle risposte all'esame scritto e/o orale e la corretta esecuzione della tesina concorreranno al voto finale.
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.
Esporta Word