PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

Elenco notifiche



Elaborazione di segnali biomedici

04GDEMV

A.A. 2024/25

Lingua dell'insegnamento

Italiano

Corsi di studio

Corso di Laurea Magistrale in Ingegneria Biomedica - Torino

Organizzazione dell'insegnamento
Didattica Ore
Lezioni 50
Esercitazioni in laboratorio 30
Docenti
Docente Qualifica Settore h.Lez h.Es h.Lab h.Tut Anni incarico
Cereatti Andrea - Corso 3   Professore Ordinario IBIO-01/A 50 0 0 0 6
Mesin Luca - Corso 2 Professore Associato IBIO-01/A 50 0 18 0 11
Molinari Filippo - Corso 1 Professore Ordinario IBIO-01/A 11 0 0 0 18
Collaboratori
Espandi

Didattica
SSD CFU Attivita' formative Ambiti disciplinari
ING-INF/06
ING-INF/06
5
3
B - Caratterizzanti
F - Altre attività (art. 10)
Ingegneria biomedica
Altre conoscenze utili per l'inserimento nel mondo del lavoro
2024/25
L’insegnamento ha lo scopo di presentare le più diffuse tecniche di elaborazione di segnali biomedici. Esso intende approfondire le conoscenze di base relativamente alle tecniche di filtraggio dei segnali, di stima spettrale (in particolare di processi casuali), di stima spettrale tempo-variante per segnali non stazionari e di analisi della complessità anche mediante metodi non-lineari. Ogni tecnica presentata verrà corredata da applicazioni su segnali biomedici reali.
The objective of this course is to provide the basic knowledge about the most widely used processing techniques specifically developed for biomedical signals. The goal is to provide knowledge about the filtering techniques, the spectral estimation (particularly of random processes), of time-varying spectral analysis of nonstationary signals and about complexity analysis, even by means of non-linear techniques. Each processing technique will be coupled to applications on real biomedical signals.
Conoscenza e capacità di comprensione Conoscenze relative alle tecniche matematiche di filtraggio e stima spettrale. Conoscenze relative al contenuto informativo dei diversi segnali biomedici. Conoscenza delle potenzialità diagnostiche e di monitoraggio delle diverse tecniche di elaborazione. Conoscenza delle problematiche specifiche di analisi dei diversi segnali biomedici. Capacità di applicare conoscenza e comprensione Dato un quesito clinico relativo ad un segnale biomedico, lo studente sarà in grado di applicare la tecnica più vantaggiosa per l’estrazione dell’informazione richiesta dal segnale. Inoltre, grazie alla conoscenza delle più recenti tecniche di elaborazione, lo studente sarà in grado di sviluppare metodi di analisi e di feature extraction automatici. Autonomia di giudizio Questo insegnamento contribuisce a sviluppare l’autonomia di giudizio durante le esercitazioni di laboratorio. Abilità comunicative Questo insegnamento contribuisce a migliorare le abilità comunicative scritte e orali mediante i laboratori. Capacità di apprendimento Questo insegnamento contribuisce a fornire allo studente gli strumenti per un aggiornamento continuo, richiedendogli la consultazione di articoli scientifici recenti che descrivono i diversi algoritmi di elaborazione. Questa attività ha lo scopo di illustrare come sia possibile, tramite la rete, acquisire informazioni e conoscenza circa le più recenti e performanti tecniche di elaborazione.
Lo studente deve avere, in particolare, una buona preparazione di matematica, teoria dei segnali, ed elementi di fisiologia. Le caratteristiche dei segnali biologici principali (EEG, ECG, EMG, etc …) devono essere note. Conoscenza delle nozioni base di anatomia e fisiologia umana sono importanti per una migliore comprensione delle necessità di applicazione di tecniche di elaborazione per rispondere ad alcuni quesiti clinici.
Gli argomenti principali del corso sono i seguenti: - Tecniche di filtraggio digitale (10h) - Stima spettrale tradizionale (10h) - Stima spettrale parametrica (10h) - Stima spettrale tempo-variante (10h) - Analisi della complessità ed analisi non-lineari (10h) - Applicazioni specifiche dell’elaborazione di segnali biomedici (20h) - Problematiche e recenti sviluppi (10h)
Il corso è organizzato in lezioni frontali ed esercitazioni in laboratorio. I laboratori, nel numero di dieci, sono organizzati in squadre di quattro studenti e vengono distribuiti lungo il corso dell’insegnamento. I laboratori sono svolti al calcolatore utilizzando MATLAB come strumento di sviluppo di algoritmi di elaborazione dei segnali. Il programma dei laboratori verte sull’approfondimento delle nozioni teoriche apprese a lezione, in particolare verranno proposti quesiti di elaborazione che inviteranno gli studenti ad implementare gli algoritmi studiati a lezione e ad applicarli a dati reali.
Slide fornite dal docente ed articoli scientifici di recente pubblicazione su tecniche particolari. Libro di Testo del corso: L. Mesin, Introduction to Biomedical Signal Processing, 2017, ISBN: 9788892332485
Slides; Libro di testo; Video lezioni tratte da anni precedenti;
Modalità di esame: Test informatizzato in laboratorio;
Exam: Computer lab-based test;
... Criteri, regole e procedure per l’esame L'esame è diviso in due parti (descritte di seguito), ambedue della tipologia "test informatizzato in laboratorio": 1. prova pratica su Matlab (peso 22/30); 2. quiz di teoria (10/30). Le valutazioni delle due parti sono sommate per formare il voto finale. Chi ottiene, come somma dei voti delle due parti, un totale superiore a 30, merita la lode. Le due prove devono essere sostenute nel medesimo appello e la correzione della prova pratica avverrà solamente per coloro che avranno ottenuto la sufficienza nella prova di teoria (votazione maggiore o uguale a 5/10, come riportato nel seguito). Gli studenti saranno allocati in laboratorio o aula attrezzata e, su richiesta, potranno usufruire di un calcolatore oppure utilizzare il proprio portatile. La seconda parte (quiz di teoria) sarà svolta tramite la piattaforma Exam. Prova pratica su Matlab - (Durata da 1 a 1.5 ore) - Possibilità di consultare appunti (slides, esercizi svolti o codice Matlab) o libri. - La prova pratica si considera superata quando viene assegnata una votazione maggiore o uguale a 13/22. - Chi non supera la prova (votazione <13/22) viene respinto. Quiz di teoria su piattaforma Exam - (Durata mezz'ora) - Possibilità di consultare appunti (slides, esercizi svolti o codice Matlab) o libri. - Vengono proposti 10 quiz a risposta multipla (5 risposte sono proposte, di cui solo una è corretta), su aspetti di teoria o di implementazione in Matlab. La risposta corretta ad un quiz equivale a 1 punto, un errore a -0.25 punti, la mancata risposta a 0 punti. - La prova di teoria si considera superata quando si ottiene un punteggio maggiore o uguale a 5/10. E’ data facoltà di esprimere la propria volontà di ritirarsi o durante l’esame, durante una delle due prove, oppure al termine dell’esame medesimo, esprimendo la richiesta di non sottoporsi al giudizio della commissione via email al docente di riferimento entro 4h dal termine dell’esame (o entro altro termine temporale indicato in sede d’esame dal docente medesimo).
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Esporta Word