PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

Elenco notifiche



Termodinamica applicata e trasmissione del calore

06IHQMN

A.A. 2024/25

Lingua dell'insegnamento

Italiano

Corsi di studio

Corso di Laurea in Ingegneria Meccanica - Torino

Organizzazione dell'insegnamento
Didattica Ore
Lezioni 48
Esercitazioni in aula 30
Esercitazioni in laboratorio 1,5
Docenti
Docente Qualifica Settore h.Lez h.Es h.Lab h.Tut Anni incarico
Asinari Pietro - Corso 3 Professore Ordinario IIND-07/A 48 7,5 0 0 2
Borchiellini Romano - Corso 1 Professore Ordinario IIND-07/A 48 7,5 0 0 21
Santarelli Massimo - Corso 2 Professore Ordinario IIND-07/A 48 7,5 0 0 14
Collaboratori
Espandi

Didattica
SSD CFU Attivita' formative Ambiti disciplinari
ING-IND/10 8 B - Caratterizzanti Ingegneria energetica
2023/24
L'insegnamento è diviso in due parti, in ognuna delle quali si trattano prima i metodi e le questioni di carattere generale e quindi le applicazioni. Nella prima parte gli studenti sono guidati a comprendere come i cambiamenti nei corpi materiali siano legati e determinati dagli scambi con altri corpi di energia in forma di calore e lavoro. Si introducono le definizioni e i concetti fondamentali, le leggi fenomenologiche e i principi generali che governano questi fenomeni insieme con le loro rappresentazioni matematiche. Successivamente si descrivono i principali processi termodinamici per la conversione di calore in lavoro e viceversa nei motori e nelle macchine frigorifere, e per controllare il comportamento di miscele di gas, specialmente quelle di aria e vapore acqueo, insieme ai relativi metodi di calcolo. Nella seconda parte si sviluppa dal punto di vista fenomenologico e dei calcoli l'analisi dei meccanismi attraverso i quali si trasferisce l'energia nello spazio e nel tempo come la conduzione di calore, la convezione e la radiazione termica. Tra le applicazioni fondamentali si studiano gli scambiatori di calore e il trasferimento di calore nelle superfici estese, come le alette di raffreddamento.
The course is organized in two parts, each of which will be analysed before the methods and general aspects, and then applications. In the first part, students are guided to understand as a thermodynamic systems and its control surface is linked to the surroundings thank to exchange of heat and work. The basic concepts, definitions, phenomenological laws and principles will be introduced with their mathematical representations. Subsequently the main technologies for the conversion of heat into work and vice versa will be described as well as some methods of calculation will be analysed, in particular will be considered engines and refrigeration equipment (both gas cycles and vapour cycles will be dealt with). In the second part will be analysed, from the phenomenological point of view, the mechanisms by which the heat could be transferred in space and time: heat conduction, convection and radiation. Among the key applications will be studied heat exchangers and heat transfer in extended surfaces such as fins.
Conoscenza dei principi della termodinamica; Capacità di applicare i principi della termodinamica a sistemi semplici; Capacità di applicare i principi della termodinamica nel caso di processi che utilizzino fluidi elementari, quali gas ideali e vapore d’acqua. Capacità di leggere i diagrammi termodinamici Conoscenza dei principali processi e cicli termodinamici , sia cicli diretti (motori) che cicli inversi (macchine operatrici) Conoscenza dei fondamenti della trasmissione del calore anche con riferimento al moto dei fluidi; Saper individuare i meccanismi di trasmissione del calore significativi per un dato fenomeno. Saper analizzare il funzionamento di uno scambiatori di calore e procedere ad un primo dimensionamento.
Elementi di analisi matematica (calcolo differenziale e integrale, metodi di soluzione dei tipi più semplici di equazioni differenziali ordinarie e alle derivate parziali, algebra delle matrici), di fisica (meccanica, dinamica, statica dei fluidi, elementi base di elettromagnetismo, fisica della materia) e di chimica di base.
DEFINIZIONI E PRINCIPI DELLA TERMODINAMICA (27 ORE): Scopo della Termodinamica. Definizioni fondamentali: Grandezze primitive e derivate. Coordinate termodinamiche, stato ed equazioni di stato. Processi e trasformazioni. Processi diretti ed inversi e ciclici. La temperatura: definizione e cenni di termometria. Grandezze funzione di trasformazione: Calore e flusso termico. Lavoro e potenza. Forze di superficie e di massa e interne. L’equazione dell’energia meccanica. Calorimetria: Trasformazioni di fluidi omogenei semplici. L’adiabatica. Applicazione ai gas ideali. Il primo principio della Termodinamica: Enunciato. Energia interna ed Entalpia. L’entalpia generalizzata. Il secondo principio della Termodinamica: Macchine termiche e rendimento. Le irreversibilità. L’enunciato fondamentale nella forma della diseguaglianza di Plank. Il ciclo ed il teorema di Carnot. L’equazione di Clapeyron. Processi reversibili. Entropia. Rendimento massimo di un ciclo. Il teorema del massimo rendimento e il lavoro massimo. Il primo principio per i sistemi aperti. Il secondo principio per i sistemi aperti. I sistemi aperti: Descrizione lagrangiana ed euleriana. La portata di massa. Conservazione della massa e della quantità di moto, primo e secondo principio della Termodinamica. L'equazione di Bernoulli. CICLI DIRETTI E INVERSI (18 ORE) Motori a gas: I cicli ideali di Carnot, Otto, Diesel, Joule. I sistemi polifasi: I cambiamenti di stato e le trasformazioni liquido-vapore. Definizioni ed equazioni fondamentali. Il titolo. L'equazione di Clapeyron. Motori a vapore: I cicli termodinamici a vapore di Carnot, Hirn e Rankine, e loro rappresentazioni nei piani p-v, T-s e h-s. Il rendimento del ciclo Rankine. Surriscaldamenti e rigenerazione. I gas reali: equazioni di stato. Macchine frigorifere e pompe di calore: Fluidi con attrito ed effetto Joule-Thomson nella trafilazione isoentalpica. I cicli inversi. Definizioni. L'efficienza o COP. Il diagramma h-log p. Cicli di macchine frigorifere a compressione di vapore con compressione semplice e multistadio. PSICROMETRIA (6 ORE) Le miscele ideali di gas ideali, grandezze psicrometriche, diagramma di Mollier dell’aria umida, trasformazioni aria umida. FONDAMENTI DI TRASMISSIONE DEL CALORE: CONDUZIONE ,CONVEZIONE E IRRAGGIAMENTO (19 ORE) Introduzione alla trasmissione del calore. Rappresentazioni continue e discrete. I modi dello scambio termico. La conduzione: L'equazione fondamentale con le condizioni al contorno. La relazione di Fourier. Fenomenologia e conduttività termica. Applicazioni. Moto dei fluidi e convezione: Viscosità. Moto laminare e turbolento e numero di Reynolds. Interazioni fluido-parete e strato limite di velocità e temperatura su lastre piane e nei condotti. La convezione e l'equazione di Newton. I numeri adimensionali. Convezione forzata in lastra piana. Lo scambio termico nei condotti. Relazioni adimensionali per la convezione forzata. Convezione naturale e relazioni adimensionali in lastra piana. Irraggiamento: Definizioni e grandezze caratteristiche. Il corpo nero. Le leggi di Stefan-Boltzmann e Wien. I corpi reali e le leggi di Kirchhoff. Scambio di energia raggiante tra superfici. I fattori di forma. L'analogia elettrica. APPLICAZIONI NOTEVOLI: SCAMBIATORI DI CALORE, SUPERFICI ESTESE (10 ORE) Scambiatori di calore: Classificazione e caratteristiche costruttive. Calcolo degli scambiatori a superficie. Bilanci di energia e flussi termici. Andamento della temperatura dei fluidi negli scambiatori a tubi coassiali. Efficienza. Il raggio critico e transitorio a massa concentrata. Teoria delle Alette e dei banchi alettati.
ESERCITAZIONI IN AULA Risoluzione di esercizi di calcolo inerenti a tutti gli argomenti svolti nell'insegnamento. ESERCITAZIONI DA SVOLGERE IN MODO AUTONOMO A CASA Sono assegnate delle esercitazioni di calcolo con report da discutere all’esame: • calcolo di un ciclo diretto Joule a gas • calcolo di un ciclo inverso a vapore • calcolo su uno scambiatore di calore LABORATORI I calcoli relativi alle esercitazioni sul ciclo inverso a vapore e sullo scambiatori di calore saranno abbinati alle esperienze di laboratorio. Il laboratorio è situato nel Dipartimento Energia presso la sede centrale del Politecnico di Torino (Corso Duca degli Abruzzi, 24).
L’unico riferimento degli argomenti trattati nell'insegnamento e che saranno oggetto di esame è il programma riportato sopra. Ai fini di una preparazione adeguata NON è sufficiente studiare solamente sugli appunti presi durante le lezioni. Per comprendere meglio gli argomenti trattati occorre infatti approfondire lo studio su un libro o, meglio, su più di uno, che a discrezione dello studente può essere scelto tra uno di quelli riportati nell’elenco qui di seguito. TESTI CHE TRATTANO SOLAMENTE LA TERMODINAMICA APPLICATA • M. Calì, P. Gregorio, "Termodinamica" Esculapio, Bologna (Ricalca nel modo più completo le lezioni di termodinamica dell'insegnamento). • M. W. Zemansky, M.M. Abbott, H.C. Van Ness, "Fondamenti di termodinamica per ingegneri", Zanichelli • P. S. Schmidt, O. A. Ezekoye, J. R. Howell, D. K. Baker, "Thermodynamics: An Integrated Learning System", J. Wiley & Sons, Inc., 2006. (Ottimo testo in inglese) Testi che trattano solamente la Trasmissione del calore • G. Guglielmini, C. Pisoni, "Introduzione alla trasmissione del calore", Casa Editrice Ambrosiana. • Bonacina C., Cavallini A., Mattarolo L., “Trasmissione del calore”, Cleup Ed., Padova Testi che trattano Termodinamica applicata e Trasmissione del calore nello stesso volume • Y. A. Çengel, "Termodinamica e trasmissione del calore", McGraw-Hill,. • M. J. Moran, H. N. Shapiro, B. R. Munson, D. P. DeWitt, "Introduction to Thermal Systems Engineering, • V. Giaretto, “Lezioni di Termodinamica Applicata e Trasmissione del Calore”, edizioni CLUT (testo in italiano che, indicativamente, segue il ciclo delle lezioni del corso) Esercizi di Termodinamica applicata e Trasmissione del calore nello stesso volume • P. Gregorio, “Esercizi Svolti (4 volumi)”, Levrotto & Bella Ed., (ottimo testo di esercizi guidati di Termodinamica e Trasmissione del Calore, in italiano).
Esercizi; Esercitazioni di laboratorio; Video lezioni tratte da anni precedenti;
Modalità di esame: Prova scritta (in aula); Elaborato progettuale individuale;
Exam: Written test; Individual project;
... L'esame intende verificare l'apprendimento dei contenuti del corso, in particolare la conoscenza dei principi della termodinamica anche con riferimento ai diagrammi termodinamici e la conoscenza dei fondamenti della trasmissione del calore anche con riferimento al moto dei fluidi. Svolgendo l’esame, lo studente aderisce al Codice Etico del Politecnico di Torino. Organizzazione dell’esame: - Prova scritta obbligatoria in aula (è obbligatoria la prenotazione). La prova scritta consisterà in: domande a risposta chiusa (con scelta multipla, di tipo numerico oppure concettuale); domande di teoria a risposta aperta, esercizi per cui sarà richiesto di riportare lo svolgimento e la soluzione numerica sui fogli forniti in aula. - Durante la prova scritta è possibile usare una calcolatrice scientifica. Non è consentito usare altro materiale (cellulare, libri, appunti, ecc.); - La durata della prova scritta potrà variare da un minimo di 1,5 h a un massimo 2 h (in base al tempo richiesto per i calcoli): il tempo esatto così come la distribuzione dei punteggi tra le varie sezioni saranno specificati all’inizio della prova; - Si intende superata la prova scritta se e solo se si consegue un punteggio non inferiore a 18/30; in caso inferiore si viene respinti; - La votazione assegnata alla prova scritta obbligatoria può consentire di conseguire sino a 30/30; - Per le esercitazioni svolte a casa possono essere aggiunti sino a 2 punti da sommare alla valutazione della prova scritta obbligatoria purché già sufficiente. La presenza di errori significativi non consente l’attribuzione di alcun punteggio. Perché la valutazione possa avere luogo, le esercitazioni svolte a casa devono essere depositate nella sezione “elaborati” del portale della didattica del corso, entro il termine di scadenza di iscrizione all’appello in cui si vuole sostenere l’esame. - Dopo la pubblicazione dei risultati dell’esame gli studenti dovranno inviare una mail, dal proprio indirizzo istituzionale, dichiarando se accettano o rifiutano il voto, secondo le modalità esplicitate con i risultati.
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Esporta Word