L’insegnamento è la base di formazione in ambito strutturale dell’ingegneria meccanica e costituisce le fondamenta dello specifico percorso formativo che si svilupperà e completerà nel corso degli anni successivi, al fine di abilitare lo/la studente/studentessa all’esercizio della professione. L'insegnamento ha come obiettivo il fornire le conoscenze di base e le abilità necessarie e fondamentali per eseguire il dimensionamento e la verifica strutturale di modelli di componenti/strutture soggetti a carichi statici e variabili nel tempo.
The course presents the basics of mechanical engineering and represents the starting level of a specific training that will be developed and completed during the following years, with the aim to qualify the student to solve real structural design problems.
The course aims to provide the basic knowledge and skills necessary to perform the structural design and verification of components/structures and mechanical systems subjected to static and fatigue loads.
Al termine dell’insegnamento lo/la studente/studentessa sarà in grado di:
• Definire un equilibrio di forze e ricavare le reazioni vincolari di un modello semplificato di componente e/o struttura;
• Disegnare e quantificare le caratteristiche di sollecitazione presenti in un modello semplificato di componente e/o struttura;
• Determinare quale sia la sezione maggiormente sollecitata e su questa definire il punto in cui si manifesta lo stato tensionale più gravoso ai fini della resistenza;
• Definire, in funzione del tipo di carico (statico o affaticante) e del tipo di cedimento del materiale (fragile o duttile), l’ipotesi di cedimento più appropriata e calcolare la tensione equivalente;
• Valutare le proprietà del materiale e, se necessario, scegliere il materiale più idoneo all’applicazione;
• Calcolare, in funzione delle richieste di verifica e/o progetto, l’appropriato coefficiente di sicurezza e/o la dimensione geometrica incognita e/o la durata del componente e/o struttura.
The expected skills after the attendance of the course are:
• Ability to define a force equilibrium and to calculate the constraint reactions of a simplified model of a component and/or a structure;
• Ability to draw and compute the internal force diagrams in a simplified model of a component and/or a structure;
• Ability to determine the most critical cross section and to define on it the point where the most severe stress state occurs;
• Ability to define, depending on load type (static or fatigue) and material type (brittle or ductile), the adequate failure criterion and to calculate the equivalent stress;
• Ability to evaluate the material properties and, if necessary, to choose the most suitable material for the application;
• Ability to calculate, depending on the verification and/or design requirements, the adequate safety factor and/or the unknown geometrical dimension and/or the component endurance.
Le conoscenze pregresse richieste per una proficua frequentazione dell’insegnamento sono:
• Studio di funzione, calcolo di derivate e integrali, calcolo matriciale, problema agli autovalori;
• Concetti base di cinematica, statica e dinamica.
The required prerequisites for a useful attendance of the course are:
• Concepts of Mathematics (study of functions, computation of derivatives and integrals, matrix algebra, eigenvalue problems);
• Concepts of Physics (basic concepts of kinematics, statics and dynamics).
• Richiami e completamento delle nozioni fondamentali di statica (forze, momenti, risultanti, equivalenza di sistemi di carico), carichi concentrati e distribuiti, vincoli fondamentali, grado di iperstaticità. Equazioni di equilibrio alla traslazione e alla rotazione nel piano e nello spazio. (1 CFU)
• Caratteristiche di sollecitazione in elementi strutturali mono-dimensionali soggetti a carichi nel piano e nello spazio. Solido di de St Venant: comportamento estensionale, flessionale, torsionale e a taglio. Stato di tensione e stato di deformazione. (3 CFU)
• Caratteristiche meccaniche statiche dei materiali di interesse ingegneristico, criteri di cedimento per materiali a comportamento fragile e duttile, coefficiente di sicurezza statico. (1 CFU)
• Configurazione deformata di travi (equazione della linea elastica), soluzione di problemi iperstatici e instabilità elastica. (1 CFU)
• Fatica meccanica mono-assiale ad alto numero di cicli (HCF): parametri caratteristici, metodo stair-case, diagramma SNP, diagramma di Woheler (curva SN), retta di Basquin, effetto della tensione media (diagrammi di Haigh e di Goodman-Smith). Dal materiale al componente: effetto della finitura superficiale, del tipo di carico, delle dimensioni ed effetto d’intaglio. Durata del componente e coefficiente di sicurezza a fatica. Fatica con sollecitazioni di ampiezza variabile. Metodo rain-flow. Regola del danneggiamento cumulativo di Palmgren-Miner. (2 CFU)
Esercitazione di laboratorio (facoltativa)
• Esperienza di laboratorio hands-on DeXpiLab su ‘Rilievo della linea elastica di trave su due appoggi caricata in mezzeria’ o su ‘Rilievo del centro di taglio su trave a sezione aperta’. L’attività è individuale e facoltativa e si esegue mediante prenotazione al laboratorio aperto DeXpiLab del DIMEAS per consentire a tutti gli/le studenti/studentesse di disporre di una postazione dedicata. E’ possibile produrre una relazione relativa a soltanto una delle due esperienze proposte e quindi accedere alla valutazione in punti se la relazione viene consegnata entro il 13/1/2024 caricandola nella sezione ‘Elaborati’ del portale della didattica. Maggiori indicazioni sulle modalità di consegna saranno fornite a lezione dai docenti.
• Summary and completion of fundamentals of statics (forces, moments, resultants, equivalence of systems), concentrated and distributed loads, fundamental constraints, static determinacy. Equilibrium equations with respect to translation and rotation in plane and in space domain. (1CFU)
• Internal force diagrams in one-dimensional structural elements subjected to plane and spatial loading conditions. de St Venant’s theory: tension/compression, bending, torsion and shear. Stress and strain state. (3,5 CFU)
• Static mechanical characteristics of materials of engineering interest, failure criteria for materials with brittle and ductile behaviour, static safety factors. (1 CFU)
• Deformed shape of bending beams (elastic line equation), overconstrained problem solution and elastic instability (buckling). (1 CFU)
• Uniaxial mechanical fatigue with high number of cycles (HCF): fundamental parameters, SN diagram, effect of the mean stress (Haigh, Goodman-Smith diagrams). From material to component: surface finishing effect, load type effect, dimension effect and notch effect. Component life and fatigue safety factor. Fatigue with varying amplitude stress (Palmgren-Miner cumulative damage rule). (1.5 CFU)
Laboratory exercise (optional)
• DeXpiLab hands-on laboratory experience "Elastic line": assembly and use of a test bench and related loading and data acquisition system for measuring the elastic line of a supported beam. The activity is optional and it is carried out by booking at the DIMEAS DeXpiLab open laboratory to allow all students to have a dedicated workstation. If it is still not possible to physically access DeXpiLab for security reasons related to the pandemic, it will be possible to carry out the 'Virtual DeXpiLab' activity on the web platform. More information will be provided by the teachers.
• Lezioni teoriche (48 ore) riguardanti gli argomenti del programma;
• Esercitazioni in aula (33 ore) a squadre sugli argomenti trattati a livello teorico riguardanti il calcolo delle reazioni vincolari di strutture monodimensionali, calcolo e tracciamento delle caratteristiche di sollecitazione, calcolo delle proprietà geometriche delle sezioni, calcolo dello stato di tensione e deformazione del punto più sollecitato, calcolo delle tensioni in presenza di carichi variabili, calcolo del coefficiente di sicurezza statico e a fatica;
• Esercitazione di laboratorio facoltativa (2 ore)
• Theory lessons (47 hours);
• Practice classes on subjects presented at theory classes (33 hours).
Testo di riferimento:
• A. Somà, Fondamenti di meccanica strutturale, Ed. Levrotto & Bella, 2019.
Possibili testi addizionali di approfondimento facoltativo:
• R.C. Juvinall, K.M. Marshek, Fondamenti della progettazione dei componenti delle macchine, Ed. ETS.
• J. A. Collins, Failure of materials in mechanical design, Ed. J. Wiley.
• M. Rossetto, Introduzione alla fatica dei materiali e dei componenti meccanici, Ed. Levrotto & Bella.
• L. Goglio, Fondamenti di Meccanica Strutturale (shareware).
Reference textbook:
• A. Somà, Fondamenti di meccanica strutturale, Ed. Levrotto & Bella, 2019.
Possible additional deepening textbooks:
• R.C. Juvinall, K.M. Marshek, Fondamenti della progettazione dei componenti delle macchine, Ed. ETS.
• J. A. Collins, Failure of materials in mechanical design, Ed. J. Wiley.
• M. Rossetto, Introduzione alla fatica dei materiali e dei componenti meccanici, Ed. Levrotto & Bella.
• L. Goglio, Fondamenti di Meccanica Strutturale (shareware).
Slides; Libro di testo; Esercizi; Esercizi risolti; Esercitazioni di laboratorio; Materiale multimediale ; Strumenti di simulazione; Strumenti di auto-valutazione;
Lecture slides; Text book; Exercises; Exercise with solutions ; Lab exercises; Multimedia materials; Simulation tools; Self-assessment tools;
Modalità di esame: Prova scritta (in aula); Prova orale facoltativa;
Exam: Written test; Optional oral exam;
...
L’esame ha lo scopo di verificare le competenze indicate nella Sezione “Risultati dell’apprendimento attesi”. Gli obiettivi che l'esame intende accertare sono pertanto: la corretta scrittura degli equilibri di forze e la corretta valutazione delle reazioni vincolari, la corretta valutazione e rappresentazione grafica delle caratteristiche di sollecitazione, la corretta determinazione della sezione maggiormente sollecitata e l’identificazione del punto con lo stato tensionale più gravoso, la corretta scelta dell’ipotesi di cedimento più appropriata per il calcolo della tensione equivalente, la corretta valutazione del coefficiente di sicurezza e/o della dimensione geometrica e/o della durata del modello di componente/struttura in esame.
• Esame scritto: la prova ha durata di 2,5 ore ed è composta da 2-3 esercizi articolati in più quesiti a risposta numerica e/o grafica e da 1-2 domande di teoria a risposta aperta.
Per accedere allo scritto, è necessario presentarsi muniti di documento di identificazione, calcolatrice scientifica non programmabile, cancelleria minima (penna blu o nera, matita, gomma, righello, squadrette e compasso). Durante lo scritto non è consentito consultare appunti o altro materiale.
Anche la chiarezza espositiva e le rappresentazioni grafiche costituiscono oggetto di valutazione.
L’esame scritto viene superato se si raggiunge un punteggio maggiore o uguale a 18/30.
La valutazione della relazione relativa all’esperienza facoltativa di laboratorio (DeXpiLab) viene sommata soltanto se la valutazione dell’esame scritto risulta già sufficiente.
• Esame orale: possono sostenere l’esame orale soltanto gli/le studenti/studentesse che hanno ottenuto un punteggio minimo dello scritto pari a 18/30.
L’orale deve essere affrontato nell’ambito dello stesso appello dello scritto.
L’orale consiste nella risposta a un minimo di 2 domande sul contenuto dell’intero programma del corso. Anche la chiarezza espositiva, i passaggi analitici e le rappresentazioni grafiche costituiscono oggetto di valutazione.
La risposta a ciascuna singola domanda orale è valutata in trentesimi, il voto della prova orale è calcolato come media dei voti parziali assegnati a ciascuna risposta.
La facoltà di non sostenere l’orale comporta:
• Per coloro che abbiano conseguito nel compito scritto un punteggio compreso tra 18 e 26, la registrazione del punteggio ottenuto come voto finale in trentesimi;
• Per coloro che abbiano conseguito nello scritto un punteggio superiore a 26, la registrazione di un voto finale pari a 26/30.
L’assenza alla data disponibile per l’esame orale viene considerata come scelta di non sostenere l’esame orale e quindi come implicita accettazione del voto ottenuto nello scritto, secondo le regole sopra esposte. Non occorre quindi comunicare ai docenti la volontà di non sostenere l’esame orale.
Il voto finale dell’esame è calcolato come media aritmetica delle valutazioni conseguite nell’esame scritto e orale (facoltativo) alla quale verrà sommata la valutazione dell’eventuale relazione dell'esperienza facoltativa di laboratorio (DeXpiLab).
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Exam: Written test; Optional oral exam;
The exam has the aim of verifying the competences of the Section " Expected Learning Outcomes". The objectives that the exam intends to verify are therefore: the correct definition of the force equilibrium and the correct calculation of the constraint reactions, the correct calculation and graphical representation of the internal forces, the correct determination of the most critical cross section and the identification of the point where the most severe stress state occurs, the correct selection of the more adequate failure criterion for the calculation of the equivalent stress, the correct calculation of the safety factor and/or of the unknown geometrical dimension and/or of the endurance of the component/structure model under investigation.
The exam is constituted by a written part and an optional oral part.
The written part of the exam, whose duration is equal to 3 hours, consists in the solution of 2-3 numerical exercises and in the open-answer of 2-3 theoretical questions concerning all the subjects presented during the course.
To attend the written part of the exam, it is necessary to:
1. Register with the usual online procedure;
2. Show up in front of the classroom that will be communicated in the web-page portal of the course (‘Avvisi’);
3. Show a valid ID card (student badge or identity card) for identification purposes and bring the following tools: scientific calculator, minimum stationery material (blue or black pen, pencil, rubber, ruler, set of square and compass).
Sheets of paper will be provided by the teachers.
During the written part of the exam, notes, textbooks and every other didactical stuff cannot be used.
Exposition clarity and clear graphic representations constitute additional subjects for the evaluation.
Students will check their own paperwork after teachers grading. This check is part of the exam session and it is taken exclusively within the date defined for the oral exam; exceptions may occur only for certified reasons.
The oral part of the exam is optional for students who have obtained a minimum score of 18 in the written part.
In order to take the oral part it is not necessary to register by means of the on-line procedure.
If the oral exam is not attended:
• for students having reached a score ranging between 18 and 26 in the written part, the final score of the exam will correspond to the score of the written exam;
• for students having reached a score larger than 26 in the written part, the final score of the exam will be limited to 26/30.
The oral part of the exam must be taken during the same call of the written part. The oral exam consists in at least 2 questions about the contents of the whole course.
The absence of the student to the official date of the oral part will be considered as choice to not take part to the oral part and therefore as implicit acceptance of the score obtained in the written part, according to the above exposed rules.
The final score of the exam is defined as the average of the two scores reached in the written and in the oral parts.
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.