PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

Elenco notifiche



Disegno tecnico industriale

21APGMN

A.A. 2024/25

Lingua dell'insegnamento

Italiano

Corsi di studio

Corso di Laurea in Ingegneria Meccanica - Torino

Mutua

01VDGMN

Organizzazione dell'insegnamento
Didattica Ore
Lezioni 58
Esercitazioni in aula 21
Esercitazioni in laboratorio 21
Tutoraggio 21
Docenti
Docente Qualifica Settore h.Lez h.Es h.Lab h.Tut Anni incarico
Genco Nicolo' - Corso 2   Docente esterno e/o collaboratore   58 0 0 0 5
Genco Nicolo' - Corso 3   Docente esterno e/o collaboratore   58 0 0 0 5
Sasso Alessandro - Corso 1 Tecnico Amministrativo   58 42 0 0 7
Collaboratori
Espandi

Didattica
SSD CFU Attivita' formative Ambiti disciplinari
ING-IND/15 10 C - Affini o integrative Attività formative affini o integrative
2023/24
Il linguaggio base di tutte le attività ingegneristiche è rappresentato, nella maggior parte dei casi, dal disegno che coinvolge l'ingegnere in due attività distinte: la modellazione e la comunicazione. Nell'attività di progettazione ed analisi di sistemi, processi ed impianti industriali, tipici dell'ingegneria industriale, l'ingegnere utilizza il disegno per la scelta della soluzione costruttiva, l'effettuazione dei calcoli di progetto, con le analisi tecnico-economiche comparate delle diverse soluzioni; in questo senso il disegno non si presenta solo come un'attività puramente grafica, ma come la sintesi dell'elevato patrimonio conoscitivo dell'ingegnere in un prodotto rispondente a delle specifiche funzionali, produttive ed economiche. Nella realtà produttiva attuale, il disegno tecnico è un documento per comunicare, in maniera completa, precisa, univoca e rigorosa, tutte le informazioni di un componente industriale con l'obiettivo principale della sua fabbricazione. Il corso fornisce le nozioni teoriche relative alla formalizzazione della forma, delle dimensioni e delle informazioni tecnologiche, dimensionali e geometriche che permetteranno allo studente di redigere il disegno tecnico completo un qualunque particolare meccanico. Vengono introdotti i principi e le regole di quotatura funzionale con tolleranze dimensionali e i metodi per la risoluzione delle catene di tolleranze e vengono introdotte le tolleranze geometriche ed i criteri per il loro controllo.
The basic language of all engineering activities is represented, in the majority of cases, by design processes that involve the engineer in two distinct activities: modeling and communication. In areas such as systems design and analysis, industrial plants and processes, which are typical fields of automotive engineering, the engineer uses technical drawings in order to identify construction solutions, carry out design calculations, and perform a technical-economic comparative analysis of the various solutions. In this sense, technical drawing is not merely a graphical exercise, but becomes a synthesis of the engineer's expertise about a product which must respect economic, manufacturing and functional specifications. Today, the engineering drawing is a document to communicate, in a complete, precise, unambiguous and rigorous way, all information of an industrial component with the main objective of its manufacturing. The course provides the theoretical notions related to the formalization of shape, dimensions, technological, dimensional and geometrical information that will permit the student to make the technical drawing of any mechanical part.
L'insegnamento si propone di fornire agli allievi ingegneri le conoscenze e le metodologie necessarie alla modellazione ed alla rappresentazione grafica di elementi di macchine, con particolare riferimento alla normativa nazionale ed internazionale. In particolare il corso tratterà gli aspetti della normazione del disegno, dei metodi proiezione e sezione, della rappresentazione degli errori dimensionali e geometrici. Verranno inoltre descritti i principali organi meccanici, la loro normativa di rapresentazione e quotatura. Lo studente dovrà acquisire la capacità di interpretare in modo univoco e corretto disegni di particolari e complessivi, di rappresentare e quotare i più comuni organi di macchine, scegliendo autonomamente: - il numero di viste necessario alla completa rappresentazione del pezzo, - la tecnica di sezione più adatta alla morfologia del pezzo, - il sistema di quotatura più opportuno in base alle esigenze funzionali, tecnologiche o di controllo ed il calcolo dei parametri di conicità, inclinazione e rastremazione, - le tolleranze dimensionali di accoppiamento ed il loro calcolo di caratterizzazione, - le tolleranze dimensionali per quote funzionali definite mediante calcolo catena tolleranze di allocazione, - le tolleranze geometriche ed i riferimenti e i criteri di dimensionamento GD&T, - l'applicazione e il disegno degli organi meccanici di collegamento, - l’applicazione e il disegno degli organi di trasmissione. Inoltre è richiesta la capacità di realizzare schizzi manuali di componenti meccanici, realizzare modelli 3D e disegni 2D, con strumenti CAD. I casi studio affrontati durante le esercitazioni offrono un background di applicazioni indirizzato a problemi comuni riscontrabili nella pratica professionale.
Informatica. Conoscenze di base dei principali metodi di rappresentazione.
INTRODUZIONE AL DISEGNO TECNICO [4 ore]: Il disegno come linguaggio grafico per la comunicazione di informazioni tecniche. Collocazione del disegno nel ciclo di vita del prodotto. Il prototipo digitale. Normazione ed unificazione nell'ambito del disegno tecnico: scale, formati dei fogli, linee e simbologia grafica. PROIEZIONI ORTOGONALI [5 ore]: Le proiezioni ortografiche di solidi: proiezioni centrali e parallele, proiezioni ortogonali ed oblique, assonometrie e proiezioni ortografiche. Disposizione delle viste secondo il metodo del primo e del terzo diedro (Europeo, Americano). Le viste ausiliarie. Particolarità di rappresentazione (spigoli virtuali, spianature, viste interrotte di pezzi di grandi dimensioni, particolari ingranditi, viste di dettaglio). Compenetrazione di solidi notevoli (cilindro scanalato, cilindro spianato, foro radiale su albero cilindrico pieno e cavo, cava di linguetta/chiavetta). SEZIONI [6 ore]: Le sezioni, la loro necessità e le relative norme di rappresentazione. Campitura e caratterizzazione del materiale. Campitura di assiemi. Casi particolari (solidi sottili, particolari di grandi dimensioni, nervature) ed eccezioni (particolari standardizzati, solidi pieni, alberi, cuscinetti). Metodologie di sezione: ad un piano, a piani paralleli, piani concorrenti, con superfici di forma qualsiasi, semisezioni, sezioni parziali, sezioni ribaltate in loco, poste in vicinanza e successive) QUOTATURA [5 ore]: Gli elementi delle quote, la loro disposizione e le relative normative. Classificazione delle quote (grandezza e dimensione) e criteri di disposizione. I sistemi di quotatura (tecnologico, funzionale e di controllo). La disposizione delle quote (serie, parallelo, combinata, sovrapposta in coordinate). Quotatura di elementi circolari (cerchi e cilindri o fori). Particolarità di quotatura (pattern di fori, raccordi, smussi, archi, angoli, corde, sfere, quadri). Note a margine per semplificare la quotatura. Quotatura di pezzi simmetrici e in semisezione. Descrizione, calcolo e prescrizione di conicità, inclinazione e rastremazione. Quotatura tecnologica dei principali processi produttivi per asportazione di truciolo (tornitura, fresatura, foratura) per oggetti plastici di stampaggio, pressofusione e fusione in sabbia (piano separazione stampi ed angoli di spoglia). Sovrametalli di lavorazione. LA RAPPRESENTAZIONE DEGLI ERRORI DIMENSIONALI [7 ore]: Le tolleranze dimensionali e la loro giustificazione nei confronti degli obiettivi tecnici, economici, logistici e commerciali. Cenni sugli strumenti di controllo: calibri differenziali. Definizione degli accoppiamenti: con gioco, con interferenza, incerto. Caratterizzazione degli accoppiamenti in condizione di minimo e massimo materiale. Definizioni: albero e foro, dimensioni nominali, linea dello zero, dimensioni limite, scostamenti e loro calcolo. Rappresentazione grafica del campo di tolleranza dimensionale. Il sistema di tolleranze secondo la normativa ISO. Gradi di tolleranza e posizioni standardizzate (scostamenti). Esempi di caratterizzazione dell’accoppiamento definito con tolleranze ISO e loro rappresentazione grafica. Rappresentazione delle tolleranze nei disegni di parte e di assieme. Tolleranze generali per dimensioni, angoli, smussi e raccordi e relativi gradi di precisione. I collegamenti foro-base ed albero-base. Criteri per la scelta delle tolleranze dimensionali ed accoppiamenti raccomandati. Disegni di parte e disegni di complessivo. Indicazioni nel disegno di complessivo (numeri di posizione, distinta base). FINITURA SUPERFICIALE [2 ore]: Definizione matematica del parametro di rugosità media ed altri parametri di rugosità. Influenza su resistenza meccanica statica e a fatica, resistenza alla corrosione, usura, forzamento dell’accoppiamento. Misura della rugosità (cenni). Indicazione a disegno. Simboli di orientamento della tessitura di lavorazione. Valori tipici di rugosità dei processi produttivi. Legame tra precisione dimensionale e rugosità. La rettifica e le gole di scarico per rettifica. CALCOLO CATENA TOLLERANZE [5 ore]: Identificazione delle quote funzionali a partire dai disegni di assieme. Impostazione della sequenza ordinata di quote (origine, verso di percorrenza, vettori quota). Catena tolleranze di parte, di assieme ed allocazione delle tolleranze. Confronto tra quotatura funzionale e tecnologica. Trasferimento tecnologico di quote funzionali. Fattore geometrico. TOLLERANZE GEOMETRICHE [9 ore]: Termini e concetti di base. Tolleranze di forma (rettilineità, planarità, circolarità, cilindricità e loro applicazione. Sistemi di riferimento (definizione e scelta del DRF, shift applicato a FOS, FOS datum pattern e riferimenti parziali) ed esempi applicativi. Tolleranze di orientamento (parallelismo, perpendicolarità, inclinazione) ed esempi. Tolleranze di posizione (condizione virtuale, bonus, shift). Uso del codatum. Pattern di FOS cartesiani e polari. Impiego dei modificatori di minimo e massimo materiale. Zona di tolleranza proiettata. Tolleranze di concentricità, simmetria ed oscillazione. Tolleranze di profilo. Confronto tra ASME e ISO. COLLEGAMENTI MECCANICI [6 ore]: Filettature: La filettatura Iso triangolare e la forma del suo profilo. Angolo dell’elica passo, diametri nominale e di nocciolo. Dimensioni dei raccordi e degli smussi del profilo. Senso di avvolgimento dell’elica e numero di principi di filettatura. Dimensioni nominali e passi standardizzati (fini e grossi). Altre tipologie di filettature (trapezoidale, quadra, dente di sega, Edison). Filettature Withworth e Gas (a tenuta e non a tenuta) e loro indicazione a disegno. Rappresentazione convenzionale e quotatura di viti e madreviti in vista ed in sezione. Rappresentazione nel disegno di assieme. Quotatura dei fori ciechi filettati e relazione con il processo di lavorazione e controllo. Necessità delle gole di scarico per filettatura, descrizione della loro forma e quotatura. Organi filettati: Definizioni. Forma delle teste e delle estremità delle viti. Collegamenti con viti: vite mordente, passante e prigioniera. Dimensionamento delle profondità di foratura e filettatura. Disegno delle teste esagonali in proiezione ortogonale. Dadi e ghiere filettate. Dispositivi antisvitamento (rosette, rosette elastiche, copiglie) e loro applicazione. Designazione degli elementi filettati nella distinta dei materiali. Tolleranze dimensionali degli elementi filettati. Calcolo della tolleranza di posizione nel serraggio delle parti (Fixed and Floating Fasteners Formulas) Perni e spine: Funzione di riferimento o di collegamento. Criteri di montaggio delle spine: scelta delle tolleranze di accoppiamento. Spine cilindriche, elastiche, coniche e ad intagli. Campi di applicazione ed indicazioni per il montaggio. Anelli elastici: Tipologie: per esterni, per interni, ad inserimento radiale. Sequenza ed attrezzi per il montaggio. Dimensione e quotatura delle gole per anelli elastici, comprensive di tolleranze e vincolo funzionale sul carico assiale massimo. Collegamenti albero mozzo con linguette e chiavette: Descrizione delle dimensioni della cava in funzione del funzionamento del collegamento a taglio o a compressione. Forme tipiche delle chiavette e relative cave di montaggio su albero. Dimensioni e tolleranze. Smontaggio delle chiavette. Forme tipiche delle linguette e tolleranze di accoppiamento con le cave. Lavorazione e quotatura delle cave. Esecuzioni particolari di linguette e loro utilizzo. Accoppiamenti scanalati: Accoppiamenti scanalati con fianchi paralleli e ad evolvente. Centraggio interno, esterno o sui fianchi e processi di lavorazione. Rappresentazione convenzionale e simboli di quotatura convenzionale. Rappresentazione degli assiemi scanalati. Tolleranze dimensionali e geometriche tipiche. ORGANI DI TRASMISSIONE DEL MOTO [3 ore]: Ruote dentate: Proprietà dell’evolvente, sua descrizione matematica e sua discretizzazione o rappresentazione parametrica. Cenni sui processi di taglio delle ruote dentate. Rappresentazione convenzionale di ruote dentate cilindriche a denti dritti, elicoidali, coniche ed indicazione del senso dell’elica. Rappresentazione della ruota singola e di un assieme (rotismo elementare) per i suddetti casi. Quotatura con separazione dei dati: quotatura per le operazioni di tornitura e tabella integrativa con le caratteristiche del dente. Tolleranze dimensionali e geometriche tipiche. Cenni sugli strumenti di misura dedicati. Trasmissione con flessibili: Cinghie e pulegge piatte ed esempi di quotatura. Prescrizione della bombatura. Cinghie e pulegge trapezioidali: dimensioni standardizzate ed esempi di quotatura. Cenni su cinghie e pulegge Poly-V dentate. Trasmissione con catene: forma delle ruote dentate per catene, sezioni tipiche delle maglie per catene. CUSCINETTI [3 ore]: Cuscinetti a striciamento. Tolleranze di montaggio, finitura superficiale, sistemi di lubrificazione. Cuscinetti volventi: struttura generale (anelli, gabbia, corpi volventi), tipologie di elementi volventi, forme costruttive e loro designazione ISO. Serie diametrali e dimensionali. Schemi di montaggio cuscinetti radiali ed il problema della dilatazione termica. Bloccaggio dei cuscinetti: spallamenti, distanziatori, anelli elastici, ghiere filettate, rosette di sicurezza. Cuscinetti assiali: criteri di montaggio (giochi ed accoppiamenti) per i cuscinetti a singolo effetto, doppio effetto e orientabili. Vincolo geometrico nel montaggio con cuscinetti radiali orientabili per garantire l’orientabilità dell’asse. Sistemi di precarico. Montaggio dei cuscinetti obliqui ad O, ad X e dispositivi di registrazione. Spessori sfogliabili. Alloggiamenti: dimensioni e raccordi degli spallamenti, finitura superficiale, criteri di scelta delle tolleranze dimensionali di accoppiamento, quotatura con tolleranze geometriche delle sedi. Dispositivi di lubrificazione. Organi di tenuta: anelli di feltro e cave di montaggio, tenute a strisciamento su albero, tenute a strisciamento su carcassa (V-Ring), O-Ring e dimensionamento delle gole e loro tolleranze. Tolleranze delle sedi e finiture superficiali delle superfici attive. Tenute a labirinto. ANALISI COMPLESSIVI [3 ORE]: Applicazione delle tenute su attuatori idraulici, Motore elettrico (cuscinetiti radiali), Mandrino sega circolare (cuscinetti radiali e tenute a labirinto), Trapano a colonna (puleggia, linguetta, ghiere, cuscinetti assiali e radiali, cremagliera), Mola da banco (doppi cuscinetti obliqui), Trapano manuale con cambio di velocità (cuscinetti, cambio, innesto a denti frontali), 3a slitta tornio (cuscinetti assiali, ghiere filettate, registrazione tamburo graduato), Differenziale autocarro (ruote coniche e cuscinetti obliqui), Riduttore fresatrice (cuscinetti conici con registrazione della posizione delle ruote coniche).
Sito di riferimento del corso: http://www.polito.it/disegno/
Le lezioni si svolgono in aula convenzionale e forniscono le nozioni teoriche indicate nel programma. Le esercitazioni a squadre si svolgono nelle aule da disegno e consistono nella rappresentazione grafica tradizionale, anche a mano libera, in assonometria ed in proiezione ortogonale quotata di parti o organi presentati singolarmente, o estratti da complessivi. I componenti devono essere rappresentati nelle viste e sezioni più opportune, indicando quote, tolleranze e rugosità. Devono inoltre essere calcolati giochi ed interferenze. Viene richiesto il metodo di quotatura funzionale. Mediante un software di disegno assistito 2D e 3D parametrico, nelle esercitazioni di laboratorio si realizzano i modelli tridimensionali dei componenti, che verranno poi assemblati con opportune relazioni di accoppiamento per formare un complessivo. Attraverso il software devono essere generate le tavole 2D dei particolari e la distinta dei materiali.
E. Chirone, S. Tornincasa, Disegno Tecnico Industriale, vol. I e II, Ed. Il Capitello, Torino, 2018. S. Tornincasa, A. Zompì, E. Vezzetti, S. Moos: Quotatura funzionale degli organi di macchine, Ed. CLUT, Torino. S. Tornincasa: Technical Drawing for Product Design, Springer, 2020, ISBN 978-3-030-60853-8,
Slides; Libro di testo;
Modalità di esame: Test informatizzato in laboratorio; Prova scritta (in aula); Elaborato progettuale individuale;
Exam: Computer lab-based test; Written test; Individual project;
... L'esame si articola in due prove: 1) Prova grafica su carta con videosorveglianza dei docenti. Rappresentazione e quotatura funzionale di particolari estratti da un complessivo. 2) Allo studente saranno posti, sotto forma di test a risposta aperta o chiusa, 10 quesiti quantitativi e qualitativi inerenti specifici argomenti nell’ambito del programma sulle tolleranze geometriche. Il livello di preparazione del candidato sarà valutato in termini di raggiungimento dei seguenti obiettivi (coerentemente con i risultati di apprendimento attesi): - Conoscenza della normativa ISO e ASME, dei principi del disegno funzionale e delle diverse opzioni di quotatura con tecniche GD&T; - capacità di specificazione tecnica dei componenti meccanici in base ai requisiti di assemblaggio. La prova ha una durata di circa 1 ora. Durante la prova scritta non si potranno consultare testi, dispense e formulari. Inoltre, non è ammesso portare in aula dispositivi multimediali con accesso al web (ad esempio, smartphone, smartwatch e tablet). E’ ammesso l’utilizzo della calcolatrice. L’esame è superato se l’elaborato scritto ottiene un voto da 18/30 a 30/30 (lode inclusa). L’esito della prova sarà comunicato agli studenti tramite un avviso sul portale della didattica, tipicamente entro due/tre giorni dallo svolgimento della prova scritta.
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Esporta Word