L'approccio analitico funzionale non sempre è sufficiente nel trattamento di molti problemi differenziali, e un'analisi dettagliata delle proprietà delle funzioni si rivela uno strumento indispensabile. Il corso si propone di introdurre gli elementi fondamentali di Analisi Reale necessari a tale scopo: misure di Stieltjes, funzioni vettoriali assolutamente continue, e funzioni vettoriali a variazione limitata in una variabile [1,2,3], argomenti ben radicati nella tradizione matematica italiana, ma a volte trascurati negli odierni corsi di laurea e dottorato e che vanno a fornire un minimo completamento dellle conoscenze di Analisi Reale già acquisite precedentemente. Ci si propone poi, dopo alcuni cenni al caso vettoriale e metrico, di mostrare alcune applicazioni a problemi variazionali d'evoluzione “rate independent” che sorgono in elastoplaticità [4], come ad esempio gli “sweeping processes” di Moreau [5,6,7,8,9,10,11,12], che hanno trovato applicazioni recenti anche nella modellizzazione di movimenti di folle e dei circuiti elettrici [13,14].
N.B.: Parti del programma possono essere modificate in base alle esigenze degli studenti.
[1] R.F. Gariepy, W.P. Ziemer, Modern Real Analysis, Brooks/Cole Pub Co (1995).
[2] G.B. Folland, Real Analysis, Wiley (1999).
[3] W. Rudin, Real and Complex Analysis, McGraw Hill (1987).
[4] A. Mielke,T. Roubícek, Rate-Independent Systems, Springer (2015).
[5] J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations 26 (1977), 347-374.
[6] V. Recupero, BV solutions of rate independent variational inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sc. (5) 10 (2011), 269-315.
[7] V. Recupero, A continuity method for sweeping processes, J. Differential Equations 251 (2011), 2125-2142.
[8] V. Recupero, BV continuous sweeping processes, J. Differential Equations 259 (2015), 4253-4272.
[9] J. Kopfova, V. Recupero, BV-norm continuity of sweeping processes driven by a set with constant shape, J. Differential Equations 261 (2016), 5875-5899.
[10] V. Recupero, Sweeping processes and rate independence, J. Convex Anal., Special volume dedicated to the memory of Jean Jacques Moreau, 23 (2016), 921-946.
[11] V. Recupero, Prox-regular sweeping processes with bounded retraction, J. Convex Anal., issue in honor of R.T. Rockafellar , 32(3) (2025), 731-756.
[12] V. Recupero, F. Stra, Perturbed prox-regular sweeping processes with truncated bounded retraction, in preparation.
[13] B. Maury, J. Venel, A mathematical framework for a crowd motion model, C. R. Math. Acad. Sci. Paris 346 (2008), 1245-1250.
[14] K. Addy, S. Adly, B. Brogliato, D. Goeleven, A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics, Nonlinear Anal. Hybrid Syst. 1
(2007), 30-43.
The functional analytic approach is not always sufficient for the treatment of many differential problems, and the analysis of fine properties of functions is often needed. This course provides the basic theory of Real Analysis which is necessary to this aim: Stieltjes measures, vectorial absolutely continuous, and BV vector functions of one real variable [1,2,3], thereby completing the students' knowledges of the basic fundamentals of Real Analysis. Then, after some hints to the vector and metric cases, we will study some applications to evolutionary variational rate independent problems arising in elasto-plasticity [4], like the Moreau “sweeping processes” [5,6,7,8,9,10,11,12] which recently have been also applied to crowd motion modeling and electric circuits [13,14].
N.B.: Parts of the program may be modified according to the needs of the students.
[1] R.F. Gariepy, W.P. Ziemer, Modern Real Analysis, Brooks/Cole Pub Co (1995).
[2] G.B. Folland, Real Analysis, Wiley (1999).
[3] W. Rudin, Real and Complex Analysis, McGraw Hill (1987).
[4] A. Mielke,T. Roubícek, Rate-Independent Systems, Springer (2015).
[5] J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations 26 (1977), 347-374.
[6] V. Recupero, BV solutions of rate independent variational inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sc. (5) 10 (2011), 269-315.
[7] V. Recupero, A continuity method for sweeping processes, J. Differential Equations 251 (2011), 2125-2142.
[8] V. Recupero, BV continuous sweeping processes, J. Differential Equations 259 (2015), 4253-4272.
[9] J. Kopfova, V. Recupero, BV-norm continuity of sweeping processes driven by a set with constant shape, J. Differential Equations 261 (2016), 5875-5899.
[10] V. Recupero, Sweeping processes and rate independence, J. Convex Anal., Special volume dedicated to the memory of Jean Jacques Moreau, 23 (2016), 921-946.
[11] V. Recupero, Prox-regular sweeping processes with bounded retraction, J. Convex Anal., issue in honor of R.T. Rockafellar , 32(3) (2025), 731-756.
[12] V. Recupero, F. Stra, Perturbed prox-regular sweeping processes with truncated bounded retraction, in preparation.
[13] B. Maury, J. Venel, A mathematical framework for a crowd motion model, C. R. Math. Acad. Sci. Paris 346 (2008), 1245-1250.
[13] K. Addy, S. Adly, B. Brogliato, D. Goeleven, A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics, Nonlinear Anal. Hybrid Syst. 1 (2007), 30-43.
Analisi reale e funzionale di base.
Basic real and functional analysis.
Richiami di teoria della misura e misure di Stieltjes.
Funzioni vettoriali assolutamente continue e a variazione limitata di una variabile reale.
Cenni su funzioni BV a valori in spazi metrici.
Applicazioni a problemi variazionali d'evoluzione rate independent e agli “sweeping processes".
N.B: Parti del programma possono essere modificate in base alle esigenze degli studenti.
Basic notions of measure theory and Stieltjes measures.
Absolutely continuous and BV vector functions of one real variable.
Hints to metric space-valued BV functions.
Applications to rate independent variational problems and “sweeping processes”.
N.B.: Parts of the program may be modified according to the needs of the students.
Modalità mista
Mixed mode
Presentazione report scritto - Presentazione orale