PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

PORTALE DELLA DIDATTICA

Elenco notifiche



Processi di separazione e Fondamenti di biologia molecolare e microbiologia

03URGMB

A.A. 2025/26

Lingua dell'insegnamento

Italiano

Corsi di studio

Organizzazione dell'insegnamento
Didattica Ore
Docenti
Docente Qualifica Settore h.Lez h.Es h.Lab h.Tut Anni incarico
Collaboratori
Espandi

Didattica
SSD CFU Attivita' formative Ambiti disciplinari
2024/25
L'insegnamento di “Processi di separazione” ha il compito di fornire conoscenze fondamentali riguardanti i principali metodi di separazione chimico fisici. Queste conoscenze sono indispensabili per comprendere e analizzare un processo chimico-fisico e progettare un'apparecchiatura di separazione.
The purpose of “Separation processes” is to provide fundamental knowledge about the main methods of chemical and physical separation. This knowledge is necessary to understand and analyse a physical-chemical process, and to design a separation unit.
Il modulo di “Processi di Separazione” fornisce conoscenze fondamentali sui seguenti argomenti: - principali processi di separazione chimico-fisica usati nell'industria di processo; - concetto di stadio di equilibrio e di efficienza di stadio; - principali apparecchiature a stadi; - metodi grafici e numerici per il calcolo del numero degli stadi o dell’altezza del riempimento di una unità di separazione; - ipotesi e limiti applicativi dei modelli matematici usati nelle unità di separazione. Al termine del modulo l'allievo dovrà essere in grado di: - eseguire bilanci di materia ed energia di singoli stadi e di intere apparecchiature a stadio; - eseguire l'analisi dei gradi di libertà di un'apparecchiatura di separazione a stadi, valutare se un problema è sotto specificato e nel caso essere in grado di saturare i gradi di libertà con specifiche adeguate; - eseguire il calcolo del numero degli stadi di equilibro e di quelli reali delle principali apparecchiature di separazione a stadi usate nell'industria di processo.
L'allievo acquisirà conoscenze fondamentali sui seguenti argomenti: - principali processi di separazione chimico-fisica usati nell'industria di processo; - concetto di stadio di equilibrio e di efficienza di stadio; - principali apparecchiature a stadi; - metodi grafici e numerici per il calcolo del numero degli stadi o dell’altezza del riempimento di una unità di separazione; - ipotesi e limiti applicativi dei modelli matematici usati nelle unità di separazione. Al termine dell'insegnamento l'allievo dovrà essere in grado di: - eseguire bilanci di materia e energia di singoli stadi e di intere apparecchiature a stadio; - eseguire l'analisi dei gradi di libertà di un'apparecchiatura di separazione a stadi, valutare se un problema è sotto specificato e nel caso essere in grado di saturare i gradi di libertà con specifiche adeguate; - eseguire il calcolo del numero degli stadi di equilibro e di quelli reali delle principali apparecchiature di separazione a stadi usate nell'industria di processo.
Fondamenti di calcolo differenziale e integrale.
Fondamenti di calcolo differenziale e integrale.
Introduzione ai processi di separazione chimico fisici: colonne a piatti e colonne a riempimento; concetto di stadio di equilibrio; schemi a stadi multipli a correnti incrociate, in controcorrente, in controcorrente con riflusso; analisi e calcolo dei gradi di libertà di apparecchiatura a stadi. Vaporizzazione parziale di una miscela multicomponenti: gradi di libertà e specifiche di progetto; equazione di Rachford-Rice; metodi di risoluzione numerica. Estrazione liquido-liquido: apparecchiature di estrazione; specifiche di progetto e gradi di libertà; calcolo con diagrammi triangolari (contro-corrente, sistemi diluiti); calcolo con metodi semplificati grafici e analitici. Assorbimento/deassorbimento di gas. Colonne a piatti: specifiche di progetto e gradi di libertà; calcolo del numero di stadi in sistemi diluiti e in sistemi concentrati (metodi grafici e metodi analitici). Colonne a riempimento: equazioni di progetto e calcolo con sistemi diluiti e concentrati. Distillazione continua in colonne a piatti: specifiche di progetto e gradi di libertà; metodo di Ponchon-Savarit; metodo di McCabe e Thiele; metodo di Riccati; metodo di Underwood. Metodi semplificati per la distillazione multicomponenti. Distillazione discontinua.
Introduzione ai processi di separazione chimico fisici: colonne a piatti e colonne a riempimento; concetto di stadio di equilibrio; schemi a stadi multipli a correnti incrociate, in controcorrente, in controcorrente con riflusso; analisi e calcolo dei gradi di libertà di apparecchiatura a stadi. Flash di una miscela multicomponenti: gradi di libertà e specifiche di progetto; equazione di Rachford-Rice; metodi di risoluzione numerica. Estrazione liquido-liquido: apparecchiature di estrazione; specifiche di progetto e gradi di libertà; calcolo con diagrammi triangolari (contro-corrente, sistemi diluiti); calcolo con metodi semplificati grafici e analitici. Assorbimento/deassorbimento di gas. Colonne a piatti: specifiche di progetto e gradi di libertà; calcolo del numero di stadi in sistemi diluiti e in sistemi concentrati (metodi grafici e metodi analitici). Colonne a riempimento: equazioni di progetto e calcolo con sistemi diluiti e concentrati. Distillazione continua in colonne a piatti: specifiche di progetto e gradi di libertà; metodo di Ponchon-Savarit; metodo di McCabe e Thiele; metodo di Riccati; metodo di Underwood. Metodi semplificati per la distillazione multicomponenti. Distillazione discontinua.
Il modulo di “Processi di Separazione” consiste in lezioni, dove si svolge la parte teoria, ed esercitazioni di calcolo. Nella parte teorica saranno illustrati i fondamenti dei processi di separazione chimico-fisici, le procedure di progettazione delle apparecchiature e le tecniche di risoluzione grafiche e numeriche. Le esercitazioni in aula consisteranno nella risoluzione di problemi di separazione con metodi numerici e/o grafici.
L’insegnamento consiste in lezioni, dove si svolge la parte teoria, ed esercitazioni di calcolo. Nella parte teorica saranno illustrati i fondamenti dei processi di separazione chimico-fisici, le procedure di progettazione delle apparecchiature e le tecniche di risoluzione grafiche e numeriche. Le esercitazioni in aula consisteranno nella risoluzione di problemi di separazione con metodi numerici e/o grafici.
Testi di riferimento consigliati - Unit Operations of Chemical Engineering / W.L. McCabe, J.C. Smith, P. Harriott - New York: McGraw-Hill, 1993. Testi consigliati per approfondimenti - Mass- transfer operations / R.E. Treybal - Auckland: McGraw-Hill, 1981. - Equilibrium-Stage Separation Operations in Chemical Engineering / E.J. Henley, J.D. Seader - New York: Wiley, 1981.
Testi di riferimento - Unit Operations of Chemical Engineering / W.L. McCabe, J.C. Smith, P. Harriott - New York: McGraw-Hill, 1993. Testi consigliati per approfondimenti - Mass- transfer operations / R.E. Treybal - Auckland: McGraw-Hill, 1981. - Equilibrium-Stage Separation Operations in Chemical Engineering / E.J. Henley, J.D. Seader - New York: Wiley, 1981.
Modalità di esame: Prova scritta (in aula); Prova orale facoltativa;
Exam: Written test; Optional oral exam;
... L’esame consiste di una prova scritta della durata di due ore e quaranta minuti e di un’eventuale prova orale facoltativa. Lo scopo delle prove è quello di esaminare la comprensione teorica della materia e la capacità di applicare la teoria e i metodi di calcolo per risolvere esercizi. In particolare, lo studente dovrà aver compreso i principi chimico-fisici, i metodi matematici e le procedure di calcolo per progettare le unità di separazione spiegate nelle lezioni e applicare tali conoscenze per risolvere specifici problemi di progetto. La prova scritta consisterà in esercizi di calcolo; solo gli allievi con voto dello scritto pari ad almeno 21 potranno accedere, se lo desiderano, alla prova orale la quale riguarderà la parte teorica. Durante lo scritto gli allievi potranno consultare esclusivamente il materiale fornito dal docente: non potranno quindi usufruire di altre fonti di informazione quali libri, manuali o appunti. Il voto finale dell’insegnamento sarà pari alla media aritmetica delle valutazioni ottenute per i due moduli.
Gli studenti e le studentesse con disabilità o con Disturbi Specifici di Apprendimento (DSA), oltre alla segnalazione tramite procedura informatizzata, sono invitati a comunicare anche direttamente al/la docente titolare dell'insegnamento, con un preavviso non inferiore ad una settimana dall'avvio della sessione d'esame, gli strumenti compensativi concordati con l'Unità Special Needs, al fine di permettere al/la docente la declinazione più idonea in riferimento alla specifica tipologia di esame.
Exam: Written test; Optional oral exam;
L’esame consiste di una prova scritta della durata di due ore e quaranta minuti e di un’eventuale prova orale facoltativa. Lo scopo delle prove è quello di esaminare la comprensione teorica della materia e la capacità di applicare la teoria e i metodi di calcolo per risolvere esercizi. In particolare, lo studente dovrà aver compreso i principi chimico-fisici, i metodi matematici e le procedure di calcolo per progettare le unità di separazione spiegate nelle lezioni e applicare tali conoscenze per risolvere specifici problemi di progetto. La prova scritta consisterà in esercizi di calcolo; solo gli allievi con voto dello scritto pari ad almeno 21 potranno accedere, se lo desiderano, alla prova orale la quale riguarderà la parte teorica. Durante lo scritto gli allievi potranno consultare esclusivamente il materiale fornito dal docente: non potranno quindi usufruire di altre fonti di informazione quali libri, manuali o appunti. Il voto finale dell’insegnamento sarà pari alla media aritmetica delle valutazioni ottenute per i due moduli.
In addition to the message sent by the online system, students with disabilities or Specific Learning Disorders (SLD) are invited to directly inform the professor in charge of the course about the special arrangements for the exam that have been agreed with the Special Needs Unit. The professor has to be informed at least one week before the beginning of the examination session in order to provide students with the most suitable arrangements for each specific type of exam.
Esporta Word