Politecnico di Torino
Politecnico di Torino
   
Login  
it
Politecnico di Torino
Academic Year 2016/17
01NLZMU
Innovation of product/Process innovation
Master of science-level of the Bologna process in Industrial Production And Technological Innovation Engineering - Torino
Teacher Status SSD Les Ex Lab Tut Years teaching
De Maddis Manuela ORARIO RICEVIMENTO RC ING-IND/16 30 21 0 0 9
Rossetto Massimo ORARIO RICEVIMENTO PO ING-IND/14 39 9 0 0 9
SSD CFU Activities Area context
ING-IND/14
ING-IND/16
5
5
B - Caratterizzanti
B - Caratterizzanti
Ingegneria meccanica
Ingegneria meccanica
Subject fundamentals
The course aims to present the methodologies used in the processes of innovation and improvement of products and processes. In particular will be dealt with the methodologies used to design and manage production specification in the engineering of innovative products, time compression techniques and statistical based methodologies to asses the quality and reliability of products, improve the quality of products and processes, for the introduction and evaluation of innovative products and processes.
Expected learning outcomes
Knowledge of the techniques of time compression for the product / process development;
Knowledge-of statistical-based methodologies to asses the quality and reliability of products and to improve the quality of products and processes; knowledge-of statistical-based methodologies for the introduction and evaluation of innovative products and processes (robust design, six sigma etc.).
Ability to adapt production to functional specification of product and to evaluate their acceptance, especially in the phases of introduction of products / processes.
Ability to provide statistical methodological support to specialists involved in the activities of R & D, and to coordinate the evaluation activities.
Prerequisites / Assumed knowledge
Knowledge of basic technologies
Basic knowledge of probability and descriptive statistics
Contents
PRODUCT INNOVATION
Background and integration of basic statistic: probability; population and sample parameters. Distribution: normal, lognormal, uniform, t-student, chi2, Weibull, exponential, Bernoulli, Poisson. Normal algebra.
Statistical Inference: confidence bounds. Mean and variance inference; inference of Bernoulli distribution.
Regression: Least squares method, correlation index; maximum likelihood method; confidence bounds.
Probability plots. Outliers.
Estimation of the distribution parameters and regression by the maximum likelihood method confidence bounds.
Reliability: definition. Static probabilistic design, Time depending reliability: failure rate function, MTTF, MTBF
System reliability: series, parallel, , stand-by, mixed and k out of n configurations.
Reliability assessment methodology; Pareto diagram, FTA, FMEA, FMECA.
Reliability evaluation test: type of data (complete, censored, truncated, incomplete): Weibull analysis; failure rate analysis; mixed Weibull analysis. Sudden Death test. Success run test
Qualitative and quantitative accelerated tests; elephant test, rate acceleration, overstress. Arrhenius, Eyring, IPL, T-NT models. Test with reduced sample; staircase.
Design of experiments: Hypothesis test; Comparison between two sample (parametric and non-parametric tests); 1 way ANOVA, 2 way ANOVA without and with replication. Classic and factorial experimental plans. Mathematical model and evaluation of effects. Factorial experimental plans; Yates tables. Orthogonality. Fractional plans. Confounding; Design and analysis. Block experimental design.
Quality: Definition. Process Capability Index, Quality Loss Function, Tolerances, economical safety factor. Quality improvement, P Diagram, Concept, parameter e tollerance design, Robust design. ANOM, sensitivity analysis. Control experiment
Basic ideas on six sigma methodology

PROCESS INNOVATION
Operations and process management
Process design 1- Positioning (volume/variety, layouts, technology, job designs)
Process design 2- Analysis (process mapping, process tasks and capacity configuration, process variability).
Manufacturing performance
Static and dynamic methodology for diagnostic and improvements of manufacturing system:
-Static methodologies (absolute benchmarking and value stream mapping,..)
-Dynamic methodologies (descriptive analysis data, variability basics, queuing theory, Measures of Manufacturing performance).
Discrete events simulation.
Lean innovation
- Push and pull production systems
- Lean synchronization
Delivery modes
PRODUCT INNOVATION
The module consists of lectures in which the topics of the course are also illustrated with application examples. Practical examples will be provided to the students; these examples will be discussed during the tutorials.

PROCESS INNOVATION
In the course the students will attend lectures and practical exercise in classroom and Informatic labs. Groups of students can work on a case study and produce a technical report that can be evaluated in the final examination, to be delivered within 10 days from the first exam session (see Assessment and grading criteria).
Texts, readings, handouts and other learning resources
Lecture notes in the course website will be provided.

Reference textbooks (Product Innovation):
G. Belingardi, "Strumenti statistici per la meccanica sperimentale e l’affidabilità"- Levrotto & Bella, 1997
C. Lipson, N. Sheth, "Statistical Design and Analysis of Engineering Experiments", McGraw-Hill, 1973
W.J. Dixon., F.J. Massey, "Introduction to statistical analysis", Int. Student Edition, McGraw-Hill, 1985
M. Vigier, "Pratique des plans d’expériences", Les éditions d’organisation, Paris, 1988
R. Levi, "Elementi di statistica sperimentale", RTM, Vico Canavese, 1972
M.S. Phadke, "Quality engineering using Robust Design", Prentice Hall, New Jersey 1989
Genichi Taguchi, "Taguchi on robust technology development: bringing quality engineering upstream", ASME Press, New York, 1993
Genichi Taguchi, "Introduction to quality engineering: designing quality into products and processes", Unipub, Dearborn, American Supplier Institute, White Plains, 1986
Genichi Taguchi, "System of experimental design: engineering methods to optimize quality and minimize costs",: Unipub Kraus ; Dearborne : American Supplier Institute, New York, 1987
W. Nelson, Accelerated testing" John Willey & Son, New York, 1990
Carter A.D.S. - "Mechanical Reliability", Macmillan 1986
Kampur K.C., Lamberson L.R. - "Reliability in engineering design", John Wiley, 1977
Useful links:
Manuale di statistica: www.dsa.unipr.it/soliani/soliani.html
www.weibull.com (life data analysis, accelerated life testing, system analysis)
www.freequality.org
www.qualityamerica.com

Reference textbooks (Process Innovation):
Factory Physics -Wallace J.Hopp, Mark L. Spearman – McGraw Hill International Edition.
Operations and Process management , principles and practice for strategic impact – Slack, Brando-Jones, Johnston, Betts- Pearson
Gestione delle operations e dei processi- Slack, Brandon-Jones, Johnston, Betts, Vinelli, Romano, Danese -Pearson
Lean organization from the tools of Toyota Production System to Lean Office -Springer
Tecnomatix Plant Simulation 10 Step-by-Step Help – Siemens
Useful link
http://cast.massey.ac.nz/collection_public.html
https://healthcare.flexsim.com/
Assessment and grading criteria
The exam consists of two parts: a first examination on "Process innovation" and a subsequent examination on "Product innovation".
To access the exam of "Product innovation" it is necessary to have passed (min. 18/30) the exam of "Process Innovation".
The final score will be the mean of the marks of the "Product innovation" and "Process Innovation" exams.
The students can save the mark of "Process Innovation" only during the ongoing examination session. In case the student does not pass the exam of "Product Innovation" in the same session, she/he will have to repeat both exams in the next exam session.

The exam of "Process innovation" consists of:
- individual oral discussion of the technical report, which will be considered sufficient only if evaluated at least 5 points (maximum 8 points).
- The written test of Process innovation assesses the knowledge and skills acquired during the course through exercises and theoretical questions. The evaluation of the written test will be considered sufficient only if superior than 18 points (maximum 25 points).
The final mark of the "Process innovation" exam will be the sum of the mark in the written test ( only if sufficient) and the mark in the technical report.
If the evaluation of the technical report will be not sufficient or it will be not delivered in time, the final mark of the exam of "Innovation process" will be the mark of the written test.
The technical report evaluation will be valid for whole the academic year.

The Product Innovation test consists of an oral test aimed at verifying the ability to identify the statistical tools and procedures necessary for the evaluation of the quality and reliability of products and for the improvement of products and processes.

Programma definitivo per l'A.A.2016/17
Back



© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
WCAG 2.0 (Level AA)
Contatti