Politecnico di Torino
Politecnico di Torino
Politecnico di Torino
Anno Accademico 2017/18
Corso di Laurea Magistrale in Ingegneria Civile - Torino
Docente Qualifica Settore Lez Es Lab Tut Anni incarico
Piras Marco   O2 ICAR/06 44 16 0 30 6
SSD CFU Attivita' formative Ambiti disciplinari
ICAR/06 6 F - Altre attivitΰ (art. 10) Altre conoscenze utili per l'inserimento nel mondo del lavoro
Geomatics is the science of modeling and analyzing geographic data " geo-referenced " to produce and manage spatial information. If you think that most of the political decisions are taken on the basis of considerations of spatial data spatial, the social impact of this matter is clear: Geomatics support technical operations, scientific programs, political, administrative and legal issues. The knowledge of the territory through the measurement and representation it is essential for its operation , for protectionist purposes or for the creation and control of engineering works .
The teaching aims to provide students, knowledge about modern methods of satellite positioning GPS / GNSS positioning inertial measurements, laser scanning , digital photogrammetry and integrated techniques, aimed at surveying applications in support of civil engineering. In addition to the instrumental theory and principles of measurement , the definition of the reference systems and their realization is the basis of every transaction geo-referencing . The statistical data analysis will be aimed at the elaboration of the acquired measurements , their return and integration of various sensors for measuring the integrated survey . The data processing, done with computer programs known in scientific and professional field, will assess the potential of modern methods of survey.
Risultati di apprendimento attesi
Knowledge of the theoretical principles underlying the different measurement techniques, planing and execution of surveys, knowledge of the techniques of data processing, analysis of results and their evaluation by statistical techniques. Application of Geomatics techniques for surveying of the territory buildings and engineering works, for mapping, monitoring of movements and deformations, tracking and implementation of civil engineering and for the protection of the territory.
Ability to perform measurements with GPS / GNSS, total stations, laser scanner, inertial sensors and digital photogrammetry techniques. Ability to choose the optimal survey methods and ability to integrate data from different measurement techniques. Processing capabilities of current measurements on the ground, or examples given. Capacity for self-development of computational procedures for computing problems for applications Geomatics.
Prerequisiti / Conoscenze pregresse
In addition to the basic mathematical knowledge, we require the basics of topography, such as geodesy (surfaces and reference systems), cartography, treatment of measures theoretical part and instrumental part on the classic topographic measurements.
Presentation of the teaching. Elements of statistics, statistical variable and random nD, linear correlation, least squares. Estimation of the variance covariance matrix of the parameters, reliability and theoretical errors of the 1st and 2nd type, data-snooping. Test adequacy of the model and condition number. Redundancy matrix and the relationship between observations and residuals. Problems sqm: equations of geodetic networks, their linearization and conduct of the calculations. Ellipses error, simulation of networks and configurable variables. Principles of sequential least squares and Kalman filter.
Recalls on the system and on the signal. Concepts for calculating satellite orbits. Stand-alone GPS positioning with code and phase measurements. Errors in GPS. Relative positioning: phase differences. Cycle slips. Positioning DGPS and RTK differential, transmission of differential corrections. Techniques of acquisition: methods and accuracy of the positioning. Features of GPS / GNSS. Permanent stations. GNSS Positioning: characteristics of GLONASS constellations. Work on new constellations Galileo, COMPASS, QZSS. GNSS RTK networks and traditional networks. Architectures VRS MRS MAC.
DATUM: Concept and definition. Inertial Systems and ECEF. Change of reference system and coordinate systems. National geodetic networks: IGM95, networks of GNSS permanent stations, Dynamic National Network (RDN). DATUM Height: height differences with GPS and classical measurements, elevations and geopotential dynamic, orthometric corrections. GNSS networks and 3D integration with classical measures, from field to real field normal and parallel to gravity.
Physical principles of inertial positioning, gyroscopes, accelerometers and magnetometers. Inertial sensors and their types IMU strapdown and gimbaled. Principles on calculating of the position with IMU. Bias and errors in the positioning Inertial reference systems, ECEF, navigation and body and navigation equations. Inertial navigation and integrated with GNSS, loosely coupled and tightly coupled. Applications GNSS / IMU in geomatics: high-performance surveys with Mobile Mapping System (MMS) applications in land, air or drone, IMU integration between GNSS, digital cameras, relations between reference systems and time scales.
Principles of operation of the laser scan. Pulse and phase measurements. Echoes and pulse return signal. Instrument and precision. LIDAR Techniques of acquisition for land and air. Positioning of the sensor in air and ground LIDAR. Integrating LIDAR plane, GNSS and IMU. The project scans air and land. Alignment and registration of LIDAR scans and notes on filtering, classification and segmentation. Products and applications that make use of LIDAR.
Principles of photogrammetry and star of directions. Process Steps: from the taking pictures to the map production. Image reference system, internal and external orientation. Analytical foundations: collinearity equations. Prospective Equations and external orientation. Central projection of a plane object. Project of the flight. Internal orientation, distortion objectives, analytical symmetric and asymmetric relative orientation, absolute orientation analysis. Work on the aerial triangulation for independent models and stars projective. Stereoscopic vision. Analytical stereo-plotters and digital stereo-plotters. Analog and digital photogrammetric cameras, aerial and land cameras. Digital photogrammetry and ortho rectification. Applications of photogrammetry for surveying of the territory and buildings.
The construction and tracking of engineering works: from design to construction work, geodetic network classification for tracking operations. Tracking planimetric and elevation with total stations, GPS / GNSS, with gyroscopic theodolites: operational schemes and precisions. Geodetic and cartographic problems in the reduction of measures in the plan mapping the terrain. Isometric reference systems for the tracking of major projects and working examples.
Organizzazione dell'insegnamento
Exercises will be held outdoors in part, for relief operations, and partly in the laboratory, to the processing of data and the operations of photogrammetry. For reasons of number of students, in measuring operation the two teams can still be divided into groups, according to the organization that will be communicated from time to time.
surveys will be carried out, for photogrammetric purposes. LIDAR measurements will be performed as well as surveys of such GNSS RTK GPS receivers and PDAs.
Exercises will be conducted on least squares, change the reference system, 3D topographic compensation networks. Project GNSS measurements (planning), GPS data processing and return of the surveys performed, processing and visualization LIDAR data, Photogrammetric image rectifying, stereoscopic vision and building cartographic products.
Testi richiesti o raccomandati: letture, dispense, altro materiale didattico
• Cina, A. (2014) – Dal GPS al GNSS (Global Navigation Satelite System) per la Geomatica – Torino - CELID
• Cina, A. (2002). Trattamento delle misure topografiche. CELID, Torino.
• Comoglio, G. (2008). Topografia e cartografia. CELID, Torino.
• Manzino, A. (2001). Lezioni di Topografia – Otto Editore. In: http://ebook.polito.it/pubbl.html.
• Dispense e slides fornite durante il corso, reperibili sul sito della didattica.
For further information:
• Bellone T. (2006) – Appunti di trattamento delle osservazioni – Torino, Politeko.
• Kraus, K., 1994. Fotogrammetria. Vol.1 – Teoria e applicazioni. Traduzione di Sergio Dequal. Torino, Levrotto & Bella
• Hofmann-Wellenhof et al (2008) – GNSS Global Navigation Satellite system. Springer – New York.
• Leick (2003) - Gps Satellite Surveying - J. Wiley – Canada. III Edizione.
Criteri, regole e procedure per l'esame
The exam aims to test the individual achievement of the basic objective of the teaching, the ability to develop a process in which knowledge of design and project proposal are connected in each phase.
The oral exam starts checking the work developed during exercises that occurred individually processed by the comment of relief.
The autonomy and maturity 'of the individual are verified by setting solutions to detection problems explained during lectures or tutorials.
Orario delle lezioni
Statistiche superamento esami

Programma definitivo per l'A.A.2017/18

© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
WCAG 2.0 (Level AA)