Politecnico di Torino
Politecnico di Torino
Politecnico di Torino
Academic Year 2016/17
Signal analysis
1st degree and Bachelor-level of the Bologna process in Biomedical Engineering - Torino
Teacher Status SSD Les Ex Lab Tut Years teaching
Olmo Gabriella   AC ING-INF/03 80 0 0 0 8
Olmo Gabriella   AC ING-INF/03 80 0 0 0 8
SSD CFU Activities Area context
ING-INF/03 8 C - Affini o integrative AttivitÓ formative affini o integrative
Subject fundamentals
The course aims to present the basic knowledge of signal theory and analysis. It provides the fundamental methodological tools for the description and analysis of continuous-time and discrete-time, both deterministic and random signals.
Expected learning outcomes
Deterministic, continuous-time signals and systems and their analysis in the frequency domain.
Deterministic, discrete-time signals and systems.
Basic concepts of probability theory.
Continuous and discrete-time random signals.
Selection and application of appropriate methods for signal analysis.
Prerequisites / Assumed knowledge
Basic mathematical analysis (integrals, derivatives), linear algebra (vectors, matrices, scalar product, norm).
In-depth knowledge of complex numbers and trigonometry.
Definition and classification of signals: continuous / discrete time, deterministic / random
Energy and mean power
Fourier Series and Transform
LTI systems, impulse response and transfer function
Energy spectral density and autocorrelation function
Periodic signals and related power spectral density
Power spectral density of non-periodic signals
Sampling Theorem
Discrete-time signals; z-transform, discrete time Fourier transform (DTFT)
LTI discrete-time systems
FIR and IIR filters
Introduction to random variables
Random processes: definitions
Stationary processes: autocorrelation and power spectral density
Ergodic processes
Delivery modes
The course consists of lectures and exercises. The classroom exercises consist in the solution of exercises related to the program carried out in class.
Texts, readings, handouts and other learning resources
- B. P. Lahti, R. A. Green, Essentials of Digital Signal Processing, Cambridge University Press, 2014
- (alternatively) Lo Presti and F. Neri, The analysis of the signals, CLUT, 1992.
In addition, teachers will provide handouts and exercises.
Assessment and grading criteria
Written exam: two exercises, each one encompassing a number of questions, to be carried out in extended form. The exercises will be related to any part of the program, and may also include theoretical questions.

Programma definitivo per l'A.A.2017/18

© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
WCAG 2.0 (Level AA)