PORTALE DELLA DIDATTICA

Ricerca CERCA
  KEYWORD

GR-06 - ELECTRONIC DESIGN AUTOMATION - EDA

Machine Learning Techniques for Process Control in Mechanical Manufacturing

keywords DEEP NEURAL NETWORKS, INDUSTRY 4.0, MACHINE LEARNING, NEURAL NETWORKS, PREDICTIVE MAINTENANCE, PROCESS CONTROL, SMART MANUFACTURING

Reference persons DANIELE JAHIER PAGLIARI

External reference persons Nicola Zaquini, Balance Systems S.r. l.

Research Groups GR-06 - ELECTRONIC DESIGN AUTOMATION - EDA

Thesis type IMPLEMENTATION, INDUSTRIAL, RESEARCH

Description Design and software implementation of a manufacturing process control system using Machine/Deep Learning methods.

The thesis will be carried out in collaboration with Balance Systems S.r.l.

In the context of mechanical manufacturing, the goal is to develop a manufacturing process control and predictive maintenance system using data gathered from sensors mounted on industrial machines. Specifically, the work will focus on acceleration and vibration sensors. The data will be analyzed using machine/deep learning techniques, with the goal of predicting malfunctionings or faults.

The student will implement and compare different Machine Learning techniques, with the goal of identifying the best solution in terms of both prediciton accuracy and computational complexity.

Required skills I candidati devono avere buone abilitÓ di programmazione ed essere interessati al machine/deep learning ed alle sue applicazioni.
Avere esperienza con Python e C++ ed avere giÓ delle nozioni base di machine/deep learning Ŕ sicuramente preferibile ma non necessario.


Deadline 14/11/2020      PROPONI LA TUA CANDIDATURA




© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
Contatti