KEYWORD |
Area Ingegneria
TensorFlow Lite on STM32 with FPGA acceleration
Riferimenti MARIO ROBERTO CASU, MASSIMO RUO ROCH
Gruppi di ricerca VLSILAB (VLSI theory, design and applications)
Descrizione The TensorFlow Lite (TFLite) framework for Deep Neural Networks (DNNs) at the edge and for IoT supports a certain number of microcontrollers, including the well-known STMicroelectronics STM32. For complex deep neural network workloads, a microcontroller needs to be helped by dedicated hardware accelerators. In this thesis, the student will use a board developed at Politecnico di Torino containing an STM32 microcontroller and a low-power FPGA to accelerate with the FPGA some TFLite kernel functions (like, Convolution, Dense, Depthwise) for which the software latency would be otherwise too large.
Vedi anche board.png
Scadenza validita proposta 06/02/2025
PROPONI LA TUA CANDIDATURA