PORTALE DELLA DIDATTICA

Ricerca CERCA
  KEYWORD

Area Ingegneria

TensorFlow Lite on STM32 with FPGA acceleration

Riferimenti MARIO ROBERTO CASU, MASSIMO RUO ROCH

Gruppi di ricerca VLSILAB (VLSI theory, design and applications)

Descrizione The TensorFlow Lite (TFLite) framework for Deep Neural Networks (DNNs) at the edge and for IoT supports a certain number of microcontrollers, including the well-known STMicroelectronics STM32. For complex deep neural network workloads, a microcontroller needs to be helped by dedicated hardware accelerators. In this thesis, the student will use a board developed at Politecnico di Torino containing an STM32 microcontroller and a low-power FPGA to accelerate with the FPGA some TFLite kernel functions (like, Convolution, Dense, Depthwise) for which the software latency would be otherwise too large.

Vedi anche  board.png 


Scadenza validita proposta 06/02/2025      PROPONI LA TUA CANDIDATURA