KEYWORD |
Improve robustness of FPGA dataflow accelerators for Convolutional Neural Networks
Parole chiave CNNS, FPGA, HLS, HW, ROBUSTNESS, TRAINING
Riferimenti CLAUDIO PASSERONE
Riferimenti esterni Pierpaolo Morì
Tipo tesi RICERCA
Descrizione The aim of this thesis is to demonstrate the effectiveness of Fault Aware Training (FAT) on dataflow FPGA accelerators for CNNs. The work will be organized in two main milestones:
• Training a CNN model modeling HW soft-errors at training time.
• Evaluate the effectiveness of the trained model on a faulty FPGA accelerator.
Vedi anche thesisproposal_fat.pdf
Conoscenze richieste Python, FPGA design
Scadenza validita proposta 26/11/2023
PROPONI LA TUA CANDIDATURA