KEYWORD |
Comparative analysis of innovative neural networks techniques for time series forecasting
Parole chiave FORECAST, MACHINE LEARNING, NEURONAL NETWORK, TIME SERIES
Riferimenti ANDREA ACQUAVIVA, EDOARDO PATTI
Riferimenti esterni Alessandro Aliberti (alessandro.aliberti@polito.it)
Gruppi di ricerca ELECTRONIC DESIGN AUTOMATION - EDA, GR-06 - ELECTRONIC DESIGN AUTOMATION - EDA, ICT4SS - ICT FOR SMART SOCIETIES
Tipo tesi SPERIMENTALE
Descrizione This thesis aims at carrying out a comparative analysis of the most innovative and used machine learning techniques for time series forecasting. For this purpose, the student will have to investigate the state of the art on neural network techniques and identify the most effective methodologies (e.g. ARX, RNN, LSTM, etc.). Starting from a common dataset provided by Internet-of-Things devices, these methodologies will be implemented on different platforms (e.g. Matlab, Tensorflow, PyTorch, etc.) in order to measure the different performances in terms of computational cost, execution time and prediction error.
Scadenza validita proposta 30/03/2019
PROPONI LA TUA CANDIDATURA