KEYWORD |
Neural Networks and Transfer Learning techniques to forecast blood glucose prediction.
Parole chiave ARTIFICIAL INTELLIGENCE, ARTIFICIAL NEURAL NETWORKS, DEEP NEURAL NETWORKS
Riferimenti SANTA DI CATALDO, EDOARDO PATTI
Riferimenti esterni Alessandro Aliberti (alessandro.aliberti@polito.it)
Gruppi di ricerca DAUIN - GR-06 - ELECTRONIC DESIGN AUTOMATION - EDA, ELECTRONIC DESIGN AUTOMATION - EDA, GR-06 - ELECTRONIC DESIGN AUTOMATION - EDA, ICT4SS - ICT FOR SMART SOCIETIES
Tipo tesi SPERIMENTALE
Descrizione Diabetes is an autoimmune disease characterized by glucose levels dysfunctions. It involves continuous monitoring combined with insulin treatment. Nowadays, continuous glucose monitoring systems (CGMs) have led to a greater availability of data. These can be effectively used by machine learning techniques to infer future values of the glycaemic concentration, allowing the early prevention of dangerous states and a better optimisation of the diabetic treatment.
This thesis aims at developing an innovative specialized prediction model, based on neural networks, that, originally trained with multi-patient data, it adapts to the needs of the Type I diabetes single-patient. In a nutshell, a universal algorithm to be equipped on CGMs i) ready to use and ii) self-adaptive to any patient profile.
By addressing the problem of automated glucose level prediction CGMs data, the student will combine our patient specialized data-driven system with our multi-patient data-driven methodology by integrating run-time information. More specifically, the student will perform a real-time fine-tuning of the model, leveraging the glucose level measurements of the patient that is currently using the system.
Conoscenze richieste Python
Scadenza validita proposta 18/10/2020
PROPONI LA TUA CANDIDATURA