PORTALE DELLA DIDATTICA

Ricerca CERCA
  KEYWORD

Residential energy demand forecasting

Parole chiave AGENT BASED SIMULATION, ENERGY CONSUMPTION FORECASTING, ICT, SMAR CITY, SIMULATION, SMART CITIES, SMART GRIDS, USER BEHAVIOUR

Riferimenti LORENZO BOTTACCIOLI, EDOARDO PATTI

Riferimenti esterni Claudia De Vizia (claudia.devizia@polito.it)

Gruppi di ricerca DAUIN - GR-06 - ELECTRONIC DESIGN AUTOMATION - EDA, ELECTRONIC DESIGN AUTOMATION - EDA, Energy Center Lab, GR-06 - ELECTRONIC DESIGN AUTOMATION - EDA, ICT4SS - ICT FOR SMART SOCIETIES

Tipo tesi SPERIMENTALE

Descrizione Energy demand forecasting is needed for the correct operation and the optimisation of the power system since it allows to plan activities such as energy resources management and storage. Various methods have been analysed for energy demand forecasting (Kalman Filter, regressive analysis and Artificial Neural Network,..), but there is always a need to improve the prediction.
Moreover, the growth in electricity consumption over the last decade is due to the residential and services sectors. Thus, residential energy demand forecasting is taking on an increasingly important role and ad-hoc methods may be considered.

This thesis aims at improving the household load forecasting comparing different methods and taking into account different parameters.
Indeed, household energy consumption is strictly related to the userís habit. Thus, including usersí behaviour and usersí preference parameters would increase the accuracy of the load forecasting.


Scadenza validita proposta 07/08/2021      PROPONI LA TUA CANDIDATURA




© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
Contatti